Rigged configurations for generalized Kac–Moody algebras

Ben Salisbury

Central Michigan University

Special Session on Diagrammatic and Combinatorial Methods in Representation Theory \mathcal{AMS} Spring Western Sectional Meeting

Joint work with Travis Scrimshaw (The University of Queensland)

Main results

Let

- ► A be an even, integral, symmetrizable Borcherds–Cartan matrix;
- ▶ \mathfrak{g} be a generalized Kac–Moody algebra associated to A; and
- $B(\infty)$ be the crystal basis of $U_q^-(\mathfrak{g})$.

Main results

Let

- ► A be an even, integral, symmetrizable Borcherds–Cartan matrix;
- ▶ g be a generalized Kac–Moody algebra associated to A; and
- $B(\infty)$ be the crystal basis of $U_q^-(\mathfrak{g})$.

Theorem (S–Scrimshaw, 2015, 2018, 2021)

- ► There is a combinatorial model for B(∞) given by rigged configurations.
- ► The *-crystal structure on B(∞) can be computed using the combinatorics of rigged configurations.

Main results

Let

- ► A be an even, integral, symmetrizable Borcherds–Cartan matrix;
- ▶ \mathfrak{g} be a generalized Kac–Moody algebra associated to A; and
- $B(\infty)$ be the crystal basis of $U_q^-(\mathfrak{g})$.

Theorem (S–Scrimshaw, 2015, 2018, 2021)

- ► There is a combinatorial model for B(∞) given by rigged configurations.
- ► The *-crystal structure on B(∞) can be computed using the combinatorics of rigged configurations.

Theorem (S–Scrimshaw, 2018, 2021)

There exists a list of conditions which characterize $B(\infty)$ completely and makes the role of the *-crystal operators explicit.

Ben Salisbury (CMU)

Let I be a countable set. A Borcherds–Cartan matrix $A = (A_{ab})_{a,b\in I}$ is a real matrix such that

$$a A_{ab} \le 0 \text{ if } a \neq b,$$

 $\ \, {\bf 0} \ \, A_{ab} \in {\bf Z} \ \, {\rm if} \ \, A_{aa} = 2, \ {\rm and} \ \,$

$$A_{ab} = 0 \iff A_{ba} = 0.$$

Let I be a countable set. A Borcherds–Cartan matrix $A=(A_{ab})_{a,b\in I}$ is a real matrix such that

- - An index $a \in I$ is called *real* if $A_{aa} = 2$ and is called *imaginary* if $A_{aa} \leq 0$.
 - ► The subset of I of all real (resp. imaginary) indices is denoted I^{re} (resp. I^{im}).
 - ► We will always assume that A_{ab} ∈ Z, A_{aa} ∈ {2} ∪ 2Z_{<0}, and that A is symmetrizable.

Examples

Example

Let
$$A = \begin{pmatrix} 2 & -3 \\ -1 & -4 \end{pmatrix}$$
. Then $I^{re} = \{1\}$ and $I^{im} = \{2\}$.

Examples

Example

Let
$$A = \begin{pmatrix} 2 & -3 \\ -1 & -4 \end{pmatrix}$$
. Then $I^{re} = \{1\}$ and $I^{im} = \{2\}$.

Example (Borcherds, 1992)

Let $I = \{(i,t) : i \in \mathbb{Z}_{\geq -1}, 1 \leq t \leq c(i)\}$, where c(i) is the *i*-th coefficient of the elliptic modular function

$$j(q) - 744 = q^{-1} + 196884q + 21493760q^2 + \dots = \sum_{i \ge -1} c(i)q^i.$$

Define $A = (A_{(i,t),(j,s)})$, where each entry is defined by

$$A_{(i,t),(j,s)} = -(i+j).$$

Definition (Jeong–Kang–Kashiwara–Shin, 2007)

An *abstract* $U_q(\mathfrak{g})$ -*crystal* is a nonempty set B together with maps

$$\begin{array}{cc} e_a, \ f_a \colon B \longrightarrow B \sqcup \{\mathbf{0}\}, \quad \varepsilon_a, \ \varphi_a \colon B \longrightarrow \mathbf{Z} \sqcup \{-\infty\}, & \operatorname{wt} \colon B \longrightarrow P, \\ (\operatorname{Kashiwara operators}) & (\operatorname{weight map}) \end{array}$$

for $a \in I$, subject to the conditions for abstract crystals associated to Kac–Moody algebras, with the following changes:

Definition (Jeong–Kang–Kashiwara–Shin, 2007)

An *abstract* $U_q(\mathfrak{g})$ -*crystal* is a nonempty set B together with maps

$$\begin{array}{cc} e_a, \ f_a \colon B \longrightarrow B \sqcup \{\mathbf{0}\}, \quad \varepsilon_a, \ \varphi_a \colon B \longrightarrow \mathbf{Z} \sqcup \{-\infty\}, & \operatorname{wt} \colon B \longrightarrow P, \\ (\operatorname{Kashiwara operators}) & (\operatorname{weight map}) \end{array}$$

for $a \in I$, subject to the conditions for abstract crystals associated to Kac–Moody algebras, with the following changes:

The negative half $U_q^-(\mathfrak{g})$ has an associated abstract $U_q(\mathfrak{g})$ -crystal, denoted

$$B(\infty) = \{ f_{a_1} \cdots f_{a_r} \mathbf{1} : r \ge 0, \ a_1, \dots, a_r \in I \}.$$

Here, $\mathbf{1} \in B(\infty)$ is the unique element such that $wt(\mathbf{1}) = 0$.

The negative half $U_q^-(\mathfrak{g})$ has an associated abstract $U_q(\mathfrak{g})$ -crystal, denoted

$$B(\infty) = \{ f_{a_1} \cdots f_{a_r} \mathbf{1} : r \ge 0, \ a_1, \dots, a_r \in I \}.$$

Here, $\mathbf{1} \in B(\infty)$ is the unique element such that $wt(\mathbf{1}) = 0$.

Moreover, for all $v \in B(\infty)$ and $a, a_1, \ldots, a_r \in I$, we have

$$\varepsilon_{a}(v) = \begin{cases} \max\{k \ge 0 : e_{a}^{k}v \neq \mathbf{0}\} & \text{if } a \in I^{\text{re}}, \\ 0 & \text{if } a \in I^{\text{im}}, \end{cases}$$
$$\varphi_{a}(v) = \varepsilon_{a}(v) + \langle h_{a}, \operatorname{wt}(v) \rangle, \\\operatorname{wt}(f_{a_{1}} \cdots f_{a_{r}} \mathbf{1}) = -\alpha_{a_{1}} - \cdots - \alpha_{a_{r}}. \end{cases}$$

There is a $\mathbf{Q}(q)$ -antiautomorphism $*: U_q(\mathfrak{g}) \longrightarrow U_q(\mathfrak{g})$ defined by

$$E_a^* = E_a, \qquad F_a^* = F_a, \qquad q^* = q, \qquad (q^h)^* = q^{-h}.$$

This is an involution which leaves $U_q^-(\mathfrak{g})$ stable.

There is a $\mathbf{Q}(q)$ -antiautomorphism $*: U_q(\mathfrak{g}) \longrightarrow U_q(\mathfrak{g})$ defined by

$$E_a^* = E_a, \qquad F_a^* = F_a, \qquad q^* = q, \qquad (q^h)^* = q^{-h}.$$

This is an involution which leaves $U_q^-(\mathfrak{g})$ stable.

Theorem (Lusztig, 1990; Kashiwara, 1993; Lamprou, 2012)

Let $B(\infty)^*$ be the image of $B(\infty)$ under *. Then $B(\infty)^* = B(\infty)$.

There is a $\mathbf{Q}(q)$ -antiautomorphism $*: U_q(\mathfrak{g}) \longrightarrow U_q(\mathfrak{g})$ defined by

$$E_a^* = E_a, \qquad F_a^* = F_a, \qquad q^* = q, \qquad (q^h)^* = q^{-h}.$$

This is an involution which leaves $U_q^-(\mathfrak{g})$ stable.

Theorem (Lusztig, 1990; Kashiwara, 1993; Lamprou, 2012) Let $B(\infty)^*$ be the image of $B(\infty)$ under *. Then $B(\infty)^* = B(\infty)$.

This induces a new crystal structure on $B(\infty)$ given by

$$e_a^* = * \circ e_a \circ *, \qquad f_a^* = * \circ f_a \circ *, \qquad \varepsilon_a^* = \varepsilon_a \circ *, \qquad \varphi_a^* = \varphi_a \circ *,$$

and weight function wt being the usual weight function on $B(\infty)$.

A rigged configuration is a pair (ν,J) consisting of

 \blacktriangleright a multipartition $\nu = (\nu^{(a)}: a \in I)$ and

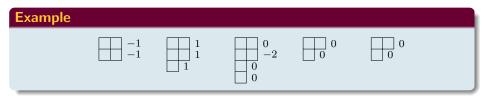
▶ a collection $J = (J_i^{(a)} : a \in I, i \in \mathbf{Z}_{\geq 0})$ of multisets of integers

which satisfy certain conditions.

A rigged configuration is a pair (ν,J) consisting of

- \blacktriangleright a multipartition $\nu = (\nu^{(a)}: a \in I)$ and
- ▶ a collection $J = (J_i^{(a)} : a \in I, i \in \mathbf{Z}_{\geq 0})$ of multisets of integers

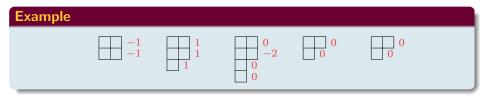
which satisfy certain conditions.



A rigged configuration is a pair (ν, J) consisting of

- \blacktriangleright a multipartition $\nu = (\nu^{(a)}: a \in I)$ and
- ▶ a collection $J = (J_i^{(a)} : a \in I, i \in \mathbf{Z}_{\geq 0})$ of multisets of integers

which satisfy certain conditions.

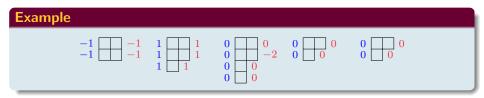


► The numbers on the right of the partition correspond to *J* and are called *riggings* or *labels*.

A rigged configuration is a pair (ν, J) consisting of

- \blacktriangleright a multipartition $\nu = (\nu^{(a)}: a \in I)$ and
- ▶ a collection $J = (J_i^{(a)} : a \in I, i \in \mathbf{Z}_{\geq 0})$ of multisets of integers

which satisfy certain conditions.

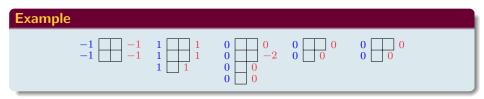


- ► The numbers on the right of the partition correspond to *J* and are called *riggings* or *labels*.
- The numbers of the left are the vacancy numbers $p_i^{(a)}$.

A rigged configuration is a pair (ν, J) consisting of

- \blacktriangleright a multipartition $\nu = (\nu^{(a)}: a \in I)$ and
- ▶ a collection $J = (J_i^{(a)} : a \in I, i \in \mathbf{Z}_{\geq 0})$ of multisets of integers

which satisfy certain conditions.



- The numbers on the right of the partition correspond to J and are called riggings or labels.
- The numbers of the left are the vacancy numbers $p_i^{(a)}$.
- The numbers $p_i^{(a)} x$ are the *coriggings* or *colabels*.

Fix some $a \in I$. Let x be the smallest rigging in $(\nu, J)^{(a)}$.

- ▶ Suppose $a \in I^{\text{re.}}$. If x = 0, then $e_a(\nu, J) = 0$. Otherwise, let r be a row in $(\nu, J)^{(a)}$ of minimal length ℓ with rigging x.
- ▶ Suppose $a \in I^{\text{im}}$. If $\nu^{(a)} = \emptyset$ or $x \neq -A_{aa}/2$, then $e_a(\nu, J) = 0$. Otherwise let r be the row with rigging $-A_{aa}/2$.

Fix some $a \in I$. Let x be the smallest rigging in $(\nu, J)^{(a)}$.

- ▶ Suppose $a \in I^{\text{re}}$. If x = 0, then $e_a(\nu, J) = 0$. Otherwise, let r be a row in $(\nu, J)^{(a)}$ of minimal length ℓ with rigging x.
- ▶ Suppose $a \in I^{\text{im}}$. If $\nu^{(a)} = \emptyset$ or $x \neq -A_{aa}/2$, then $e_a(\nu, J) = 0$. Otherwise let r be the row with rigging $-A_{aa}/2$.

Let
$$I = \{1, 2\}, A = \begin{pmatrix} 2 & -3 \\ -1 & -4 \end{pmatrix}$$
, and $(\nu, J) = \begin{array}{ccc} 1 & 1 & 14 & 12 \\ 5 & -1 & 14 & 7 \\ & 14 & 3 \end{array}$

Fix some $a \in I$. Let x be the smallest rigging in $(\nu, J)^{(a)}$.

- ▶ Suppose $a \in I^{\text{re}}$. If x = 0, then $e_a(\nu, J) = 0$. Otherwise, let r be a row in $(\nu, J)^{(a)}$ of minimal length ℓ with rigging x.
- ▶ Suppose $a \in I^{\text{im}}$. If $\nu^{(a)} = \emptyset$ or $x \neq -A_{aa}/2$, then $e_a(\nu, J) = 0$. Otherwise let r be the row with rigging $-A_{aa}/2$.

Fix some $a \in I$. Let x be the smallest rigging in $(\nu, J)^{(a)}$.

- ▶ Suppose $a \in I^{\text{re}}$. If x = 0, then $e_a(\nu, J) = 0$. Otherwise, let r be a row in $(\nu, J)^{(a)}$ of minimal length ℓ with rigging x.
- ▶ Suppose $a \in I^{\text{im}}$. If $\nu^{(a)} = \emptyset$ or $x \neq -A_{aa}/2$, then $e_a(\nu, J) = 0$. Otherwise let r be the row with rigging $-A_{aa}/2$.

Let
$$I = \{1, 2\}, A = \begin{pmatrix} 2 & -3 \\ -1 & -4 \end{pmatrix}$$
, and $(\nu, J) = \begin{pmatrix} 1 & 1 & 14 \\ 5 & -1 & 14 \\ 14 & 14 \\ 14 & 3 \end{pmatrix}$. Then
 $e_1(\nu, J) = \begin{pmatrix} 3 & 13 & 11 \\ 13 & 16 \\ 13 & 13 \\ 13 & 2 \end{pmatrix}$ and $e_2(\nu, J) = \mathbf{0}$.

Fix some $a \in I$. Let x be the smallest rigging in $(\nu, J)^{(a)}$. Let r be a row in $(\nu, J)^{(a)}$ of maximal length ℓ with rigging x. Then $f_a(\nu, J)$ is the rigged configuration that adds a box to row r, sets the new rigging of r to be $x - A_{aa}/2$, and changes all other riggings such that the coriggings remain fixed.

Fix some $a \in I$. Let x be the smallest rigging in $(\nu, J)^{(a)}$. Let r be a row in $(\nu, J)^{(a)}$ of maximal length ℓ with rigging x. Then $f_a(\nu, J)$ is the rigged configuration that adds a box to row r, sets the new rigging of r to be $x - A_{aa}/2$, and changes all other riggings such that the coriggings remain fixed.

Let
$$I = \{1, 2\}$$
, $A = \begin{pmatrix} 2 & -3 \\ -1 & -4 \end{pmatrix}$, and $(\nu, J) = \begin{array}{c} 1 \\ 5 & -1 \\ 1 & 14 \\ 14 & 7 \\ 14 & 3 \end{array}$

Fix some $a \in I$. Let x be the smallest rigging in $(\nu, J)^{(a)}$. Let r be a row in $(\nu, J)^{(a)}$ of maximal length ℓ with rigging x. Then $f_a(\nu, J)$ is the rigged configuration that adds a box to row r, sets the new rigging of r to be $x - A_{aa}/2$, and changes all other riggings such that the coriggings remain fixed.

 $f_1(\nu, J) = \begin{array}{ccc} -1 & 1 & -1 & 14 & -12 \\ 1 & -2 & 14 & -7 \\ 14 & -3 & -2 & -14 & -7 \\ 14 & -3 & -7 & -7 & -7 \\ 14 & -3 & -7 & -7 & -7 & -7 \\ 14 & -7 & -7 & -7 & -7 &$

Fix some $a \in I$. Let x be the smallest rigging in $(\nu, J)^{(a)}$. Let r be a row in $(\nu, J)^{(a)}$ of maximal length ℓ with rigging x. Then $f_a(\nu, J)$ is the rigged configuration that adds a box to row r, sets the new rigging of r to be $x - A_{aa}/2$, and changes all other riggings such that the coriggings remain fixed.

Let
$$I = \{1, 2\}, A = \begin{pmatrix} 2 & -3 \\ -1 & -4 \end{pmatrix}, \text{ and } (\nu, J) = \begin{pmatrix} 1 \\ 5 & -1 \end{pmatrix} \begin{pmatrix} 1 & 14 \\ 14 & 7 \\ 14 & 3 \end{pmatrix}$$
. Then
 $f_1(\nu, J) = \begin{pmatrix} -1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} -1 & 14 \\ 14 & 7 \\ 14 & 3 \end{pmatrix}$ and $f_2(\nu, J) = \begin{pmatrix} 4 \\ 8 & 2 \end{pmatrix} \begin{pmatrix} 12 \\ 2 & 18 \\ 18 & 11 \\ 18 & 7 \\ 18 & 18 \end{pmatrix}$

Fix some $a \in I$. Let x be the smallest corigging in $(\nu, J)^{(a)}$.

- ▶ Suppose $a \in I^{\text{re.}}$. If x = 0, then $e_a^*(\nu, J) = \mathbf{0}$. Otherwise, let r be a row in $(\nu, J)^{(a)}$ of minimal length ℓ with corigging x.
- ▶ Suppose $a \in I^{\text{im}}$. If $\nu^{(a)} = \emptyset$ or $x \neq -A_{aa}/2$, then $e_a^*(\nu, J) = 0$. Otherwise let r be the row with corigging $-A_{aa}/2$.

Fix some $a \in I$. Let x be the smallest corigging in $(\nu, J)^{(a)}$.

- ▶ Suppose $a \in I^{\text{re.}}$. If x = 0, then $e_a^*(\nu, J) = \mathbf{0}$. Otherwise, let r be a row in $(\nu, J)^{(a)}$ of minimal length ℓ with corigging x.
- ▶ Suppose $a \in I^{\text{im}}$. If $\nu^{(a)} = \emptyset$ or $x \neq -A_{aa}/2$, then $e_a^*(\nu, J) = 0$. Otherwise let r be the row with corigging $-A_{aa}/2$.

Let
$$I = \{1, 2\}, A = \begin{pmatrix} 2 & -3 \\ -1 & -4 \end{pmatrix}$$
, and $(\nu, J) = \begin{array}{ccc} 1 & 1 & 14 \\ 5 & -1 & 14 \\ 14 & 7 \\ 14 & 3 \end{array}$

Fix some $a \in I$. Let x be the smallest corigging in $(\nu, J)^{(a)}$.

- ▶ Suppose $a \in I^{\text{re.}}$. If x = 0, then $e_a^*(\nu, J) = \mathbf{0}$. Otherwise, let r be a row in $(\nu, J)^{(a)}$ of minimal length ℓ with corigging x.
- ▶ Suppose $a \in I^{\text{im}}$. If $\nu^{(a)} = \emptyset$ or $x \neq -A_{aa}/2$, then $e_a^*(\nu, J) = 0$. Otherwise let r be the row with corigging $-A_{aa}/2$.

Let
$$I = \{1, 2\}, A = \begin{pmatrix} 2 & -3 \\ -1 & -4 \end{pmatrix}$$
, and $(\nu, J) = \begin{pmatrix} 1 & 1 & 14 \\ 5 & -1 & 14 \\ 14 & 3 \end{pmatrix}$. Then
 $e_1^*(\nu, J) = \mathbf{0}$

Fix some $a \in I$. Let x be the smallest corigging in $(\nu, J)^{(a)}$.

- ▶ Suppose $a \in I^{\text{re.}}$. If x = 0, then $e_a^*(\nu, J) = \mathbf{0}$. Otherwise, let r be a row in $(\nu, J)^{(a)}$ of minimal length ℓ with corigging x.
- ▶ Suppose $a \in I^{\text{im}}$. If $\nu^{(a)} = \emptyset$ or $x \neq -A_{aa}/2$, then $e_a^*(\nu, J) = 0$. Otherwise let r be the row with corigging $-A_{aa}/2$.

Let
$$I = \{1, 2\}$$
, $A = \begin{pmatrix} 2 & -3 \\ -1 & -4 \end{pmatrix}$, and $(\nu, J) = \begin{pmatrix} 1 & 1 & 14 \\ 5 & -1 & 14 \\ 14 & 3 \end{pmatrix}$. Then
 $e_1^*(\nu, J) = \mathbf{0}$ and $e_2^*(\nu, J) = \begin{pmatrix} -2 & -1 & 1 & 10 \\ 2 & -1 & 10 \end{pmatrix} \begin{pmatrix} 7 & -2 & -1 & 1 \\ 3 & -1 & -1 & 10 \end{pmatrix} \begin{pmatrix} 7 & -2 & -1 & -1 \\ 3 & -1 & -1 & -1 \end{pmatrix}$.

Let
$$I = \{1, 2\}$$
, $A = \begin{pmatrix} 2 & -3 \\ -1 & -4 \end{pmatrix}$, and $(\nu, J) = \begin{array}{c} 1 \\ 5 \\ -1 \end{array} \begin{array}{c} 1 & 14 \\ 14 \\ 14 \end{array} \begin{array}{c} 12 \\ 7 \\ 3 \end{array}$

Let
$$I = \{1, 2\}$$
, $A = \begin{pmatrix} 2 & -3 \\ -1 & -4 \end{pmatrix}$, and $(\nu, J) = \begin{pmatrix} 1 \\ 5 \\ -1 \\ 14 \\ 14 \\ 14 \\ 3 \end{pmatrix}$. Then

$$f_1^*(\nu, J) = \begin{array}{ccc} -1 & & & & 0 & 14 \\ 5 & & -1 & & 14 & & 7 \\ & & & 14 & & 3 \end{array}$$

Crystal model for $\overline{B(\infty)}$

Define $(\nu_{\emptyset}, J_{\emptyset})$ by $\boldsymbol{\nu}_{\emptyset}^{(a)} = 0$ for all $a \in I$, $\boldsymbol{\nu}_{i}^{(a)} = 0$ for all $(a, i) \in I \times \mathbb{Z}_{>0}$.

Crystal model for $B(\infty)$

Define
$$(\nu_{\emptyset}, J_{\emptyset})$$
 by
 $\blacktriangleright \ \nu_{\emptyset}^{(a)} = 0$ for all $a \in I$, $\blacktriangleright \ J_i^{(a)} = 0$ for all $(a, i) \in I \times \mathbb{Z}_{>0}$.

Definition

Define $\mathrm{RC}(\infty)$ to be the graph generated by $(\nu_\emptyset, J_\emptyset)$, e_a , and f_a , for $a \in I$.

Crystal model for $B(\infty)$

Define
$$(\nu_{\emptyset}, J_{\emptyset})$$
 by
 $\blacktriangleright \ \nu_{\emptyset}^{(a)} = 0$ for all $a \in I$, $\blacktriangleright \ J_i^{(a)} = 0$ for all $(a, i) \in I \times \mathbb{Z}_{>0}$.

Definition

Define $\mathrm{RC}(\infty)$ to be the graph generated by $(\nu_\emptyset, J_\emptyset)$, e_a , and f_a , for $a \in I$.

The remainder of the crystal structure is given by

$$\varepsilon_{a}(\nu, J) = \begin{cases} \max\{k \in \mathbf{Z} : e_{a}^{k}(\nu, J) \neq 0\} & \text{if } a \in I^{\text{re}} \\ 0 & \text{if } a \in I^{\text{im}}, \end{cases}$$
$$\varphi_{a}(\nu, J) = \langle h_{a}, \operatorname{wt}(\nu, J) \rangle + \varepsilon_{a}(\nu, J),$$
$$\operatorname{wt}(\nu, J) = -\sum_{a \in I} |\nu^{(a)}| \alpha_{a}.$$

Definition

Define $\mathrm{RC}(\infty)^*$ to be the graph generated by $(\nu_\emptyset,J_\emptyset),~e_a^*,$ and $f_a^*,$ for $a\in I.$

Definition

Define $\mathrm{RC}(\infty)^*$ to be the graph generated by $(\nu_\emptyset,J_\emptyset),~e_a^*,$ and $f_a^*,$ for $a\in I.$

Define the remaining crystal structure by

$$\begin{split} \varepsilon_a^*(\nu,J) &= \begin{cases} \max\{k \in \mathbf{Z} : (e_a^*)^k(\nu,J) \neq 0\} & \text{if } a \in I^{\text{re}}, \\ 0 & \text{if } a \in I^{\text{im}}, \end{cases} \\ \varphi_a^*(\nu,J) &= \langle h_a, \operatorname{wt}(\nu,J) \rangle + \varepsilon_a^*(\nu,J), \\ \operatorname{wt}(\nu,J) &= -\sum_{a \in I} |\nu^{(a)}| \alpha_a. \end{split}$$

Theorem (S–Scrimshaw, 2018, 2021)

As $U_q(\mathfrak{g})$ -crystals, $\mathrm{RC}(\infty) \cong \mathrm{RC}(\infty)^* \cong B(\infty)$ and

$$e_a^* = * \circ e_a \circ *, \qquad \qquad f_a^* = * \circ f_a \circ *.$$

Theorem (S–Scrimshaw, 2018, 2021)

As $U_q(\mathfrak{g})$ -crystals, $\mathrm{RC}(\infty) \cong \mathrm{RC}(\infty)^* \cong B(\infty)$ and

$$e_a^* = * \circ e_a \circ *, \qquad \qquad f_a^* = * \circ f_a \circ *.$$

Corollary

The *-involution on $RC(\infty)$ is given by replacing every rigging x of a row of length i in $(\nu, J)^{(a)}$ by the corresponding corigging $p_i^{(a)} - x$ for all $a \in I$ and i > 0.

Associated to each irreducible highest weight $U_q(\mathfrak{g})$ -module $V(\lambda)$ in \mathcal{O}^{int} is an abstract $U_q(\mathfrak{g})$ -crystal, denoted

$$B(\lambda) = \{f_{a_1} \cdots f_{a_r} u_\lambda : r \ge 0, \ a_1, \dots, a_r \in I\} \setminus \{\mathbf{0}\}.$$

Here, $u_{\lambda} \in B(\lambda)$ is the unique element such that $wt(u_{\lambda}) = \lambda$.

Associated to each irreducible highest weight $U_q(\mathfrak{g})$ -module $V(\lambda)$ in \mathcal{O}^{int} is an abstract $U_q(\mathfrak{g})$ -crystal, denoted

$$B(\lambda) = \{f_{a_1} \cdots f_{a_r} u_\lambda : r \ge 0, \ a_1, \dots, a_r \in I\} \setminus \{\mathbf{0}\}.$$

Here, $u_{\lambda} \in B(\lambda)$ is the unique element such that $wt(u_{\lambda}) = \lambda$.

In this case, for all $a, a_1, \cdots, a_r \in I$ and $v \in B(\lambda)$, we have

$$\varepsilon_{a}(v) = \begin{cases} \max\{k \ge 0 : e_{a}^{k}v \neq \mathbf{0}\} & \text{if } a \in I^{\text{re}}, \\ 0 & \text{if } a \in I^{\text{im}}, \end{cases}$$
$$\varphi_{a}(v) = \begin{cases} \max\{k \ge 0 : f_{a}^{k}v \neq \mathbf{0}\} & \text{if } a \in I^{\text{re}}, \\ \langle h_{a}, \operatorname{wt}(v) \rangle & \text{if } a \in I^{\text{im}}, \end{cases}$$
$$\operatorname{wt}(f_{a_{1}} \cdots f_{a_{r}}u_{\lambda}) = \lambda - \alpha_{a_{1}} - \cdots - \alpha_{a_{r}}.$$

Theorem (Jeong–Kang–Kashiwara–Shin, 2007)

Let $\lambda \in P^+$ and let T_{λ} and C be certain "elementary crystals." Then $B(\lambda)$ is isomorphic to the connected component of $B(\infty) \otimes T_{\lambda} \otimes C$ containing $\mathbf{1} \otimes t_{\lambda} \otimes c$.

Theorem (Jeong–Kang–Kashiwara–Shin, 2007)

Let $\lambda \in P^+$ and let T_{λ} and C be certain "elementary crystals." Then $B(\lambda)$ is isomorphic to the connected component of $B(\infty) \otimes T_{\lambda} \otimes C$ containing $\mathbf{1} \otimes t_{\lambda} \otimes c$.

- ▶ Define new crystal operators $f'_a(\nu, J)$ as $f_a(\nu, J)$ unless
 - $p_i^{(a)} + \langle h_a, \lambda \rangle < x$ for some $(a, i) \in \mathcal{H}$ and $x \in J_i^{(a)}$ or
 - $\varphi_a(\nu, J) = 0$ for $a \in I^{\text{im}}$,

in which case set $f'_a(\nu, J) = 0$.

• Let $\operatorname{RC}(\lambda)$ denote the closure of $(\nu_{\emptyset}, J_{\emptyset})$ under f'_a .

Theorem (Jeong–Kang–Kashiwara–Shin, 2007)

Let $\lambda \in P^+$ and let T_{λ} and C be certain "elementary crystals." Then $B(\lambda)$ is isomorphic to the connected component of $B(\infty) \otimes T_{\lambda} \otimes C$ containing $\mathbf{1} \otimes t_{\lambda} \otimes c$.

- ▶ Define new crystal operators $f'_a(\nu, J)$ as $f_a(\nu, J)$ unless
 - $p_i^{(a)} + \langle h_a, \lambda \rangle < x$ for some $(a, i) \in \mathcal{H}$ and $x \in J_i^{(a)}$ or

•
$$\varphi_a(\nu, J) = 0$$
 for $a \in I^{\text{im}}$,

in which case set $f'_a(\nu, J) = 0$.

• Let $\operatorname{RC}(\lambda)$ denote the closure of $(\nu_{\emptyset}, J_{\emptyset})$ under f'_a .

Theorem (Schilling, 2006; S-Scrimshaw, 2015, 2017, 2021)

Let $\lambda \in P^+$. Then $\operatorname{RC}(\lambda) \cong B(\lambda)$.

One can characterize the image of $B(\lambda)$ inside $B(\infty)$ using the *-involution in analogy to Kashiwara (1995).

One can characterize the image of $B(\lambda)$ inside $B(\infty)$ using the *-involution in analogy to Kashiwara (1995).

Corollary

Let $\lambda \in P^+$. Then we have $\operatorname{RC}(\lambda) \cong \left\{ (\nu, J) \otimes t_{\lambda} \in \operatorname{RC}(\infty) \otimes T_{\lambda} : \begin{array}{c} \varepsilon_a^*(\nu, J) \leq \langle h_a, \lambda \rangle \text{ for all } a \in I^{\operatorname{re}}, \\ \varepsilon_a^*(\nu, J) = \mathbf{0} \text{ if } \langle h_a, \lambda \rangle = 0 \text{ for all } a \in I^{\operatorname{im}} \end{array} \right\}.$ Theorem (Kashiwara–Saito, 1997; Jeong–Kang–Kashiwara–Shin, 2007)

Let B be an abstract $U_q(\mathfrak{g})$ -crystal such that

- $\bullet \ \operatorname{wt}(B) \subset -Q^+,$
- 2 there exists an element $v_0 \in B$ such that $wt(v_0) = 0$,
- **③** for any $v \in B$ such that $v \neq v_0$, there exists some $a \in I$ such that $e_a v \neq 0$, and

• for all $a \in I$, there exists a strict embedding $\Psi_a : B \longrightarrow B \otimes \mathbf{N}_{(a)}$. Then there exists a crystal isomorphism $B \cong B(\infty)$ such that $v_0 \mapsto \mathbf{1}$. Define

 $\widetilde{\varepsilon}_a(v) := \max\{k' \ge 0 : e_a^{k'} v \neq \mathbf{0}\}, \qquad \widetilde{\varphi}_a(v) := \max\{k' \ge 0 : f_a^{k'} v \neq \mathbf{0}\},$

and similarly for $\widetilde{\varepsilon}^*_a$ and $\widetilde{\varphi}^*_a$ using e^*_a and f^*_a respectively. Additionally, define

$$\kappa_a(v) := \begin{cases} \varepsilon_a(v) + \varepsilon_a^*(v) + \langle h_a, \operatorname{wt}(v) \rangle & \text{ if } a \in I^{\operatorname{re}}, \\ \varepsilon_a(v) + \widetilde{\varepsilon}_a^*(v) A_{aa} + \langle h_a, \operatorname{wt}(v) \rangle & \text{ if } a \in I^{\operatorname{im}}. \end{cases}$$

Theorem (Kashiwara–Saito, 1997; Tingley–Webster, 2016; S–Scrimshaw, 2018, 2021)

Let $(B, e_a, f_a, \varepsilon_a, \varphi_a, \mathrm{wt})$ and $(B^\star, e_a^\star, f_a^\star, \varepsilon_a^\star, \varphi_a^\star, \mathrm{wt})$ be connected abstract $U_q(\mathfrak{g})$ -crystals with the same highest weight element $v_0 \in B \cap B^\star$ that is the unique element of weight 0, where the remaining crystal data is determined by setting $\mathrm{wt}(v_0) = 0$ and

$$\varepsilon_a(v) = \begin{cases} \max\{k \ge 0 : e_a^k v \neq \mathbf{0}\} & \text{if } a \in I^{\rm re}, \\ 0 & \text{if } a \in I^{\rm im}. \end{cases}$$

Theorem

Assume further that, for all $a \neq b$ in I and all $v \in B$,

$$(B, e_a, f_a, \varepsilon_a, \varphi_a, \operatorname{wt}) \cong B(\infty).$$

Theorem

Moreover, suppose $\kappa_a(v) = 0$ if and only if

$$\kappa_a^{\star}(v) := \varepsilon_a^{\star}(v) + \widetilde{\varepsilon}_a(v) A_{aa} + \left\langle h_a, \operatorname{wt}(v) \right\rangle = 0$$

for all $a \in I^{\text{im}}$ and $v \in B$. Then

$$(B^{\star}, e_a^{\star}, f_a^{\star}, \varepsilon_a^{\star}, \varphi_a^{\star}, \operatorname{wt}) \cong B(\infty)$$

with $e_a^{\star} = e_a^{\star}$ and $f_a^{\star} = f_a^{\star}$.