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Main results

Let

I A be an even, integral, symmetrizable Borcherds–Cartan matrix;

I g be a generalized Kac–Moody algebra associated to A; and

I B(∞) be the crystal basis of U−q (g).

Theorem (S–Scrimshaw, 2015, 2018, 2021)

I There is a combinatorial model for B(∞) given by rigged
configurations.

I The ∗-crystal structure on B(∞) can be computed using the
combinatorics of rigged configurations.

Theorem (S–Scrimshaw, 2018, 2021)

There exists a list of conditions which characterize B(∞) completely and
makes the role of the ∗-crystal operators explicit.
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Borcherds–Cartan matrices

Let I be a countable set. A Borcherds–Cartan matrix A = (Aab)a,b∈I is a
real matrix such that

1 Aaa = 2 or Aaa ≤ 0 for a ∈ I,

2 Aab ≤ 0 if a 6= b,

3 Aab ∈ Z if Aaa = 2, and

4 Aab = 0 ⇐⇒ Aba = 0.

I An index a ∈ I is called real if Aaa = 2 and is called imaginary if
Aaa ≤ 0.

I The subset of I of all real (resp. imaginary) indices is denoted Ire

(resp. I im).

I We will always assume that Aab ∈ Z, Aaa ∈ {2} ∪ 2Z<0, and that A
is symmetrizable.
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Examples

Example

Let A =

(
2 −3
−1 −4

)
. Then Ire = {1} and I im = {2}.

Example (Borcherds, 1992)

Let I = {(i, t) : i ∈ Z≥−1, 1 ≤ t ≤ c(i)}, where c(i) is the i-th coefficient
of the elliptic modular function

j(q)− 744 = q−1 + 196884q + 21493760q2 + · · · =
∑
i≥−1

c(i)qi.

Define A = (A(i,t),(j,s)), where each entry is defined by

A(i,t),(j,s) = −(i+ j).
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Abstract Uq(g)-crystals

Definition (Jeong–Kang–Kashiwara–Shin, 2007)

An abstract Uq(g)-crystal is a nonempty set B together with maps

ea, fa : B −→ B t {0}
(Kashiwara operators)

, εa, ϕa : B −→ Z t {−∞}, wt: B −→ P
(weight map)

,

for a ∈ I, subject to the conditions for abstract crystals associated to
Kac–Moody algebras, with the following changes:

1 For any a ∈ I and v ∈ B such that eav 6= 0,

a. εa(eav) = εa(v)− 1 and ϕa(eav) = ϕa(v) + 1 if a ∈ Ire,
b. εa(eav) = εa(v) and ϕa(eav) = ϕa(v) +Aaa if a ∈ I im.

2 For any a ∈ I and v ∈ B such that fav 6= 0,

a. εa(fav) = εa(v) + 1 and ϕa(fav) = ϕa(v)− 1 if a ∈ Ire,
b. εa(fav) = εa(v) and ϕa(fav) = ϕa(v)−Aaa if a ∈ I im.

Ben Salisbury (CMU) Crystals of Rigged Configurations 05/01/2021 5 / 23



Abstract Uq(g)-crystals

Definition (Jeong–Kang–Kashiwara–Shin, 2007)

An abstract Uq(g)-crystal is a nonempty set B together with maps

ea, fa : B −→ B t {0}
(Kashiwara operators)

, εa, ϕa : B −→ Z t {−∞}, wt: B −→ P
(weight map)

,

for a ∈ I, subject to the conditions for abstract crystals associated to
Kac–Moody algebras, with the following changes:

1 For any a ∈ I and v ∈ B such that eav 6= 0,

a. εa(eav) = εa(v)− 1 and ϕa(eav) = ϕa(v) + 1 if a ∈ Ire,
b. εa(eav) = εa(v) and ϕa(eav) = ϕa(v) +Aaa if a ∈ I im.

2 For any a ∈ I and v ∈ B such that fav 6= 0,

a. εa(fav) = εa(v) + 1 and ϕa(fav) = ϕa(v)− 1 if a ∈ Ire,
b. εa(fav) = εa(v) and ϕa(fav) = ϕa(v)−Aaa if a ∈ I im.

Ben Salisbury (CMU) Crystals of Rigged Configurations 05/01/2021 5 / 23



The crystal B(∞) (Jeong–Kang–Kashiwara, 2005)

The negative half U−q (g) has an associated abstract Uq(g)-crystal, denoted

B(∞) = {fa1 · · · far1 : r ≥ 0, a1, . . . , ar ∈ I}.

Here, 1 ∈ B(∞) is the unique element such that wt(1) = 0.

Moreover, for all v ∈ B(∞) and a, a1, . . . , ar ∈ I, we have

εa(v) =

{
max{k ≥ 0 : ekav 6= 0} if a ∈ Ire,
0 if a ∈ I im,

ϕa(v) = εa(v) + 〈ha,wt(v)〉,

wt(fa1 · · · far1) = −αa1 − · · · − αar .
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∗-involution on B(∞)

There is a Q(q)-antiautomorphism ∗ : Uq(g) −→ Uq(g) defined by

E∗a = Ea, F ∗a = Fa, q∗ = q, (qh)∗ = q−h.

This is an involution which leaves U−q (g) stable.

Theorem (Lusztig, 1990; Kashiwara, 1993; Lamprou, 2012)

Let B(∞)∗ be the image of B(∞) under ∗. Then B(∞)∗ = B(∞).

This induces a new crystal structure on B(∞) given by

e∗a = ∗ ◦ ea ◦ ∗, f∗a = ∗ ◦ fa ◦ ∗, ε∗a = εa ◦ ∗, ϕ∗a = ϕa ◦ ∗,

and weight function wt being the usual weight function on B(∞).
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Rigged configurations

A rigged configuration is a pair (ν, J) consisting of

I a multipartition ν = (ν(a) : a ∈ I) and

I a collection J = (J
(a)
i : a ∈ I, i ∈ Z≥0) of multisets of integers

which satisfy certain conditions.

Example

−1
−1

1
1
1

0
0
0
0

0
0

0
0

I The numbers on the right of the partition correspond to J and are
called riggings or labels.

I The numbers of the left are the vacancy numbers p
(a)
i .

I The numbers p
(a)
i − x are the coriggings or colabels.
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Computing ei

Definition (Schilling, 2006; S–Scrimshaw, 2021)

Fix some a ∈ I. Let x be the smallest rigging in (ν, J)(a).

I Suppose a ∈ Ire. If x = 0, then ea(ν, J) = 0. Otherwise, let r be a row in
(ν, J)(a) of minimal length ` with rigging x.

I Suppose a ∈ I im. If ν(a) = ∅ or x 6= −Aaa/2, then ea(ν, J) = 0. Otherwise
let r be the row with rigging −Aaa/2.

If ea(ν, J) 6= 0, then ea(ν, J) is the rigged configuration that removes a box from
row r, sets the new rigging of r to be x+Aaa/2, and changes all other riggings
such that the coriggings remain fixed.

Let I = {1, 2}, A = ( 2 −3
−1 −4 ), and (ν, J) = 1

−1
1
5

12
7
3

14
14
14

. Then

e1(ν, J) = 33 11
6
2

13
13
13

and e2(ν, J) = 0.
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Computing fi

Definition (Schilling, 2006; S–Scrimshaw, 2021)

Fix some a ∈ I. Let x be the smallest rigging in (ν, J)(a). Let r be a row
in (ν, J)(a) of maximal length ` with rigging x. Then fa(ν, J) is the rigged
configuration that adds a box to row r, sets the new rigging of r to be
x−Aaa/2, and changes all other riggings such that the coriggings remain
fixed.

Let I = {1, 2}, A = ( 2 −3
−1 −4 ), and (ν, J) = 1

−1
1
5

12
7
3

14
14
14

. Then

f1(ν, J) = −1
−2

−1
1

12
7
3

14
14
14

and f2(ν, J) = 4
2

4
8

16
11
7
2

18
18
18
18

.
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Computing e∗i

Definition (S–Scrimshaw, 2018, 2021)

Fix some a ∈ I. Let x be the smallest corigging in (ν, J)(a).

I Suppose a ∈ Ire. If x = 0, then e∗a(ν, J) = 0. Otherwise, let r be a row in
(ν, J)(a) of minimal length ` with corigging x.

I Suppose a ∈ I im. If ν(a) = ∅ or x 6= −Aaa/2, then e∗a(ν, J) = 0. Otherwise
let r be the row with corigging −Aaa/2.

If e∗a(ν, J) 6= 0, then e∗a(ν, J) is the rigged configuration that removes a box from
row r, sets the rigging of r so that the corigging is x−Aaa/2, and keeps all other
riggings fixed.

Let I = {1, 2}, A = ( 2 −3
−1 −4 ), and (ν, J) = 1

−1
1
5

12
7
3

14
14
14

. Then

e∗1(ν, J) = 0 and e∗2(ν, J) = 1
−1

−2
2

7
3

10
10

.
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I Suppose a ∈ Ire. If x = 0, then e∗a(ν, J) = 0. Otherwise, let r be a row in
(ν, J)(a) of minimal length ` with corigging x.

I Suppose a ∈ I im. If ν(a) = ∅ or x 6= −Aaa/2, then e∗a(ν, J) = 0. Otherwise
let r be the row with corigging −Aaa/2.

If e∗a(ν, J) 6= 0, then e∗a(ν, J) is the rigged configuration that removes a box from
row r, sets the rigging of r so that the corigging is x−Aaa/2, and keeps all other
riggings fixed.

Let I = {1, 2}, A = ( 2 −3
−1 −4 ), and (ν, J) = 1
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1
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7
3

14
14
14
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Computing f∗i

Definition (S–Scrimshaw, 2018, 2021)

Fix some a ∈ I. Let x be the smallest corigging in (ν, J)(a). Let r be a
row in (ν, J)(a) of maximal length ` with corigging x. Then f∗a (ν, J) is the
rigged configuration that adds a box to row r, sets the rigging of r so that
the corigging is x−Aaa/2, and keeps all other riggings fixed.

Let I = {1, 2}, A = ( 2 −3
−1 −4 ), and (ν, J) = 1
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7
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Crystal model for B(∞)

Define (ν∅, J∅) by

I ν
(a)
∅ = 0 for all a ∈ I, I J

(a)
i = 0 for all (a, i) ∈ I × Z>0.

Definition

Define RC(∞) to be the graph generated by (ν∅, J∅), ea, and fa, for
a ∈ I.

The remainder of the crystal structure is given by

εa(ν, J) =

{
max{k ∈ Z : eka(ν, J) 6= 0} if a ∈ Ire

0 if a ∈ I im,
ϕa(ν, J) = 〈ha,wt(ν, J)〉+ εa(ν, J),

wt(ν, J) = −
∑
a∈I
|ν(a)|αa.
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Crystal model for B(∞)

Definition

Define RC(∞)∗ to be the graph generated by (ν∅, J∅), e∗a, and f∗a , for
a ∈ I.

Define the remaining crystal structure by

ε∗a(ν, J) =

{
max{k ∈ Z : (e∗a)

k(ν, J) 6= 0} if a ∈ Ire,
0 if a ∈ I im,

ϕ∗a(ν, J) = 〈ha,wt(ν, J)〉+ ε∗a(ν, J),

wt(ν, J) = −
∑
a∈I
|ν(a)|αa.

Ben Salisbury (CMU) Crystals of Rigged Configurations 05/01/2021 14 / 23



Crystal model for B(∞)

Definition

Define RC(∞)∗ to be the graph generated by (ν∅, J∅), e∗a, and f∗a , for
a ∈ I.

Define the remaining crystal structure by

ε∗a(ν, J) =

{
max{k ∈ Z : (e∗a)

k(ν, J) 6= 0} if a ∈ Ire,
0 if a ∈ I im,

ϕ∗a(ν, J) = 〈ha,wt(ν, J)〉+ ε∗a(ν, J),

wt(ν, J) = −
∑
a∈I
|ν(a)|αa.

Ben Salisbury (CMU) Crystals of Rigged Configurations 05/01/2021 14 / 23



Crystal model for B(∞)

Theorem (S–Scrimshaw, 2018, 2021)

As Uq(g)-crystals, RC(∞) ∼= RC(∞)∗ ∼= B(∞) and

e∗a = ∗ ◦ ea ◦ ∗, f∗a = ∗ ◦ fa ◦ ∗.

Corollary

The ∗-involution on RC(∞) is given by replacing every rigging x of a row

of length i in (ν, J)(a) by the corresponding corigging p
(a)
i − x for all a ∈ I

and i > 0.
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Irreducible highest weight crystals

Associated to each irreducible highest weight Uq(g)-module V (λ) in Oint

is an abstract Uq(g)-crystal, denoted

B(λ) = {fa1 · · · faruλ : r ≥ 0, a1, . . . , ar ∈ I} \ {0}.

Here, uλ ∈ B(λ) is the unique element such that wt(uλ) = λ.

In this case, for all a, a1, · · · , ar ∈ I and v ∈ B(λ), we have

εa(v) =

{
max{k ≥ 0 : ekav 6= 0} if a ∈ Ire,
0 if a ∈ I im,

ϕa(v) =

{
max{k ≥ 0 : fka v 6= 0} if a ∈ Ire,
〈ha,wt(v)〉 if a ∈ I im,

wt(fa1 · · · faruλ) = λ− αa1 − · · · − αar .
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Irreducible highest weight crystals and rigged configurations

Theorem (Jeong–Kang–Kashiwara–Shin, 2007)

Let λ ∈ P+ and let Tλ and C be certain “elementary crystals.” Then
B(λ) is isomorphic to the connected component of B(∞)⊗ Tλ ⊗ C
containing 1⊗ tλ ⊗ c.

I Define new crystal operators f ′a(ν, J) as fa(ν, J) unless

• p
(a)
i + 〈ha, λ〉 < x for some (a, i) ∈ H and x ∈ J (a)

i or
• ϕa(ν, J) = 0 for a ∈ I im,

in which case set f ′a(ν, J) = 0.

I Let RC(λ) denote the closure of (ν∅, J∅) under f ′a.

Theorem (Schilling, 2006; S-Scrimshaw, 2015, 2017, 2021)

Let λ ∈ P+. Then RC(λ) ∼= B(λ).
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Irreducible highest weight crystals and rigged configurations

One can characterize the image of B(λ) inside B(∞) using the
∗-involution in analogy to Kashiwara (1995).

Corollary

Let λ ∈ P+. Then we have

RC(λ) ∼=
{

(ν, J)⊗ tλ ∈ RC(∞)⊗ Tλ :
ε∗a(ν,J)≤〈ha,λ〉 for all a∈Ire,

e∗a(ν,J)=0 if 〈ha,λ〉=0 for all a∈Iim

}
.
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Characterizing B(∞)

Theorem (Kashiwara–Saito, 1997; Jeong–Kang–Kashiwara–Shin,
2007)

Let B be an abstract Uq(g)-crystal such that

1 wt(B) ⊂ −Q+,

2 there exists an element v0 ∈ B such that wt(v0) = 0,

3 for any v ∈ B such that v 6= v0, there exists some a ∈ I such that
eav 6= 0, and

4 for all a ∈ I, there exists a strict embedding Ψa : B −→ B ⊗N(a).

Then there exists a crystal isomorphism B ∼= B(∞) such that v0 7→ 1.
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Characterizing B(∞) again

Define

ε̃a(v) := max{k′ ≥ 0 : ek
′

a v 6= 0}, ϕ̃a(v) := max{k′ ≥ 0 : fk
′

a v 6= 0},

and similarly for ε̃∗a and ϕ̃∗a using e∗a and f∗a respectively. Additionally, define

κa(v) :=

{
εa(v) + ε∗a(v) +

〈
ha,wt(v)

〉
if a ∈ Ire,

εa(v) + ε̃∗a(v)Aaa +
〈
ha,wt(v)

〉
if a ∈ I im.

Theorem (Kashiwara–Saito, 1997; Tingley–Webster, 2016; S–Scrimshaw,
2018, 2021)

Let (B, ea, fa, εa, ϕa,wt) and (B?, e?a, f
?
a , ε

?
a, ϕ

?
a,wt) be connected abstract

Uq(g)-crystals with the same highest weight element v0 ∈ B ∩B? that is the
unique element of weight 0, where the remaining crystal data is determined by
setting wt(v0) = 0 and

εa(v) =

{
max{k ≥ 0 : ekav 6= 0} if a ∈ Ire,
0 if a ∈ I im.
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Characterizing B(∞) again (continued)

Theorem

Assume further that, for all a 6= b in I and all v ∈ B,

1 fav, f?av 6= 0;

2 f?afbv = fbf
?
av and ε̃?a(fbv) = ε̃?a(v) and ε̃b(f

?
av) = ε̃b(v);

3 κa(v) = 0 implies fav = f?av;
4 for a ∈ Ire:

• κa(v) ≥ 0;

• κa(v) ≥ 1 implies ε?a(fav) = ε?a(v) and εa(f?av) = εa(v);

• κa(v) ≥ 2 implies faf
?
av = f?afav;

5 for a ∈ I im: κa(v) > 0 implies ε̃?a(fav) = ε̃?a(v) and faf
?
av = f?afav.

Then
(B, ea, fa, εa, ϕa,wt) ∼= B(∞).
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Characterizing B(∞) again (continued. . . again)

Theorem

Moreover, suppose κa(v) = 0 if and only if

κ?a(v) := ε∗a(v) + ε̃a(v)Aaa +
〈
ha,wt(v)

〉
= 0

for all a ∈ I im and v ∈ B. Then

(B?, e?a, f
?
a , ε

?
a, ϕ

?
a,wt) ∼= B(∞)

with e?a = e∗a and f?a = f∗a .
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