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PBW bases and marginally large tableaux in type D

Ben Salisbury
∗,†

, Adam Schultze
‡
, and Peter Tingley

‡

We give an explicit description of the unique crystal isomorphism
between two realizations of B(∞) in type D: that using marginally
large tableaux and that using PBW monomials with respect to one
particularly nice reduced expression of the longest word.

1. Introduction

For any symmetrizable Kac–Moody algebra, the crystal B(∞) is a combi-
natorial object that contains information about the corresponding universal
enveloping algebra and its integrable highest weight representations. Kashi-
wara’s definition of B(∞) uses some intricate algebraic constructions, but it
can often be realized in quite simple ways. We consider two such realizations
in type Dn.

1. The construction using marginally large tableaux from [8] (and the
closely related earlier work [4]), which is a limiting case of constructions
in [11].

2. The recent construction using bracketing rules on Kostant partitions
from [15], which is naturally identified with the algebraic crystal struc-
ture on PBW monomials for one particularly nice reduced expression
of w0.

We explicitly describe the unique crystal isomorphism between these two
realizations (see Theorem 3.1). This is a type Dn analogue of a type An

result that can be found in [3], although the type Dn situation is a little
different.1 Most notably, the isomorphism is not as “local”: in type An,
the map from tableaux to Kostant partitions simply maps each box in the
tableau to a root, but in type Dn one must consider multiple boxes at once.
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Table 2.1: Positive roots of type Dn, expressed both as a linear combination
of simple roots and in the canonical realization following [2]

βi,k = αi + · · ·+ αk, 1 ≤ i ≤ k ≤ n− 1
γi,k = αi + · · ·+ αn−2 + αn + αn−1 + · · ·+ αk, 1 ≤ i < k ≤ n

βi,k = εi − εk+1, 1 ≤ i ≤ k ≤ n− 1
γi,k = εi + εk, 1 ≤ i < k ≤ n

In the final section we give a diagrammatic description of Kostant partitions
and the crystal operators on them motivated by the multisegment realization
of B(∞) in type An [3, 9, 12, 16].

2. Background

Let g be the Lie algebra of type Dn with Cartan matrix and Dynkin diagram

A = (aij) =

⎛
⎜⎜⎜⎝

2 −1 0 ··· 0 0 0
−1 2 −1 ··· 0 0 0
0 −1 2 ··· 0 0 0

. . .
0 0 0 ··· 2 −1 −1
0 0 0 ··· −1 2 0
0 0 0 ··· −1 0 2

⎞
⎟⎟⎟⎠ ,

α1 α2 αn−2

αn−1

αn

· · ·

.

Let {α1, . . . , αn} be the simple roots and {α∨
1 , . . . , α

∨
n} the simple coroots,

related by the inner product 〈α∨
j , αi〉 = aij . Define the fundamental weights

{ω1, . . . , ωn} by 〈α∨
i , ωj〉 = δij . Then the weight lattice is P = Zω1⊕· · ·⊕Zωn

and the coroot lattice is P∨ = Zα∨
1 ⊕ · · · ⊕ Zα∨

n . The Cartan subalgebra h

is given by C ⊗Z P∨. Let Φ denote the roots associated to g, with the set
of positive roots denoted Φ+. The list of positive roots is given in Table 2.1.
The Weyl group associated to g is the group generated by s1, . . . , sn, where
si(λ) = λ − 〈α∨

i , λ〉αi for all λ ∈ P . There exists a unique longest element
of W , which we denote as w0. For notational brevity, set I = {1, 2, . . . , n}.

Let B(∞) be the infinity crystal associated to g as defined in [10]. This
is a countable set along with operators ei and fi which roughly correspond
to the Chevalley generators of g. We don’t need the details of the definition
of B(∞), as we just consider two explicitly defined ways to realize it.

2.1. Type D marginally large tableaux

Definition 2.1. A marginally large tableau of type Dn is an n − 1 row
tableau on the alphabet

J(Dn) :=

{
1 ≺ · · · ≺ n− 1 ≺ n

n
≺ n− 1 ≺ · · · ≺ 1

}
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which satisfies the following conditions.

1. The first column has entries 1, 2, . . . , n− 1 in that order.

2. Entries weakly increase along rows.

3. The number of i-boxes in the ith row is exactly one more than the total

number of boxes in the (i+1)st row. We call this condition “marginal

largeness.”

4. Every entry in the ith row is 
 ı.

5. The entries n and n do not appear in the same row.

Denote by T (∞) the set of marginally large tableaux.

For 1 ≤ i ≤ n− 1, the boxes in the ith row with content i will be called

shaded boxes; all other boxes will be called unshaded. Given a tableau T ∈
T (∞), define its weight as follows. Let k j be an unshaded box containing

k in the jth row of T . Set

wt
(
k j

)
=

⎧⎪⎨
⎪⎩
−βj,k−1 if k is an unbarred letter,

−γj,k if k is a barred letter and k �= j,

−γj,j+1 − βj,j if k = j.

Then the weight wt(T ) of T is the sum over all unshaded boxes k j in T of

wt( k j).

Example 2.2. In type D4, the elements of T (∞) all have the form

T =
1 1 · · · 1 1 · · · 1 1 1 · · · 1 1 · · · 1 1 · · · 1 1 · · · 1 1 2 · · · 2 3 · · · 3 x1 · · · x1 3 · · · 3 2 · · · 2 1 · · · 1
2 2 · · · 2 2 · · · 2 2 3 · · · 3 x2 · · · x2 3 · · · 3 2 · · · 2
3 x3 · · · x3 3 · · · 3

,

where xi ∈ {4, 4} for each i = 1, 2, 3. In particular, the unique element of

weight zero is

T∞ =
1 1 1
2 2
3

.

Definition 2.3. Fix a type Dn marginally large tableau. The reading word

read(T ) is obtained by reading right to left along rows, starting at the top

and working down.

Definition 2.4. For each 1 ≤ i ≤ n, the bracketing sequence bri(T ) is

the sequence obtained by placing a ‘)’ under each letter for which there
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1 · · · n− 1

n

n

n− 1 · · · 1
1 n − 2

n − 1

n

n

n − 1

n − 2 1

Figure 2.1: The fundamental crystal of type Dn.

is an i-colored arrow entering the corresponding box in Figure 2.1, and

a ‘(’ under each letter for which there is an i-colored arrow leaving the

corresponding box. Sequentially cancel all ()-pairs to obtain a sequence of

the form ) · · · )(· · · (. The remaining brackets are called uncanceled.

Remark 2.5. The sequence bri(T ) factors as bri(R1)bri(R2) · · · bri(Rn−1),

where bri(Rj) is the sequence of brackets coming from the jth row of T ,

counting from the top.

Definition 2.6. Let T ∈ T (∞) and i ∈ I.

1. Let x be the letter in T corresponding to the rightmost uncanceled

‘)’ in bri(T ). Then eiT is the tableau obtained from T by replacing

the box containing x by the box containing the letter at the other

end of the i-arrow from x in Figure 2.1. If the result is not marginally

large, then delete exactly one column containing the elements 1, . . . , i

so that the result is marginally large. If no such ‘)’ exists, then define

eiT = 0.

2. Let y be the letter in T corresponding to the leftmost uncanceled ‘(’ in

bri(T ). Then fiT is the tableau obtained from T by replacing the box

containing y by the box containing the letter at the other end of the

i-arrow from y in Figure 2.1. If the result is not marginally large, then

insert exactly one column containing the elements 1, . . . , i so that the

result is marginally large.

Remark 2.7. For i ≤ n − 1, ei changes the content of exactly one box in

T either from ı to ı+ 1 or from i+1 to i. The marginal largeness condition

is preserved unless eiT changes an i + 1 to an i on the ith row. Then eiT

contains two adjacent columns with entries 1, 2, . . . , i, one of which must be

removed to satisfy the marginally large condition. The situation is similar

for i = n.
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Example 2.8. Consider D4 and

T =
1 1 1 1 1 1 1 1 1 2 2 3 1 1 1
2 2 2 2 3 4 3 3
3 4 3

.

To calculate e4 and f4, the relevant arrows from Figure 2.1 are

3 4 4 3
4 4

, .

Thus each 3 and 4 will contribute ‘(’, each 4 and 3 will contribute ‘)’, and
all other letters will contribute nothing. The reading word and bracketing
sequence are

read(T ) = 1 1 1 3 2 2 1 1 1 1 1 1 1 1 1 3 3 4 3 2 2 2 2 3 4 3

br4(T ) = ) ) ) ) ( ) ) (.

The rightmost uncanceled ‘)’ is the one shown in blue, so e4 changes the
corresponding 4-box in the third row to a 3-box. To maintain marginal
largeness, we must delete one of the columns containing 123:

e4T =
1 1 1 1 1 1 1 1 2 2 3 1 1 1
2 2 2 3 4 3 3
3 3

.

Similarly,

f4T =
1 1 1 1 1 1 1 1 1 1 2 2 3 1 1 1
2 2 2 2 2 3 4 3 3
3 4 4 3

.

In Definition 2.3, we are using the so-called middle-Eastern reading, as
defined in [7]. This differs from the definition of the signature rule for element
of T (∞) given in [8] which uses the far-Eastern reading in which the tableau
is read from top to bottom in columns starting with the rightmost column.
(The subsequent crystal structure is constructed using the same bracketing
sequence as above and the same operators, just with read(T ) replaced by
this new reading.) However, the resulting operators are identical:

Proposition 2.9. The operators ei and fi on T (∞) defined using the far-
Eastern reading and the middle-Eastern reading, respectively, are identical.
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Proof. Fix T ∈ T (∞) and let ci,j be the number of j-boxes in row i of T .
First assume 1 ≤ i ≤ n − 2. Then all brackets used in calculating fi come
from rows 1, . . . , i+1. The brackets corresponding to unshaded boxes come
in exactly the same order for the two readings. Thus the only difference
between the two bracket orders is the suffix of the sequence, where one has:

(2.10)

far-Eastern: · · · (ci,i−ci+1,i+1+cι+1,i+1() · · · ()︸ ︷︷ ︸
ci+1,i+1

,

middle-Eastern: · · · (ci,i(cı+1,i+1)ci+1,i+1 .

Since ci,i > ci+1,i+1, the portions shown each have no uncanceled, ‘),’ and
they have the same number of uncanceled ‘(,’ with the first uncanceled ‘(’
corresponding to a shaded i. It follows that the first uncanceled bracket of
each type in the two sequences corresponds to a box of the same type (i.e.,
same content and on same row). Clearly both rules always apply fi to the
rightmost box of a given type, and ei to the leftmost, so the two rules agree.

The argument for i = n − 1, n is similar, and in fact simpler, since the
only shaded boxes that are relevant are the shaded n− 1.

Remark 2.11. Unlike in type An, the operators on finite type Dn tableaux
using these two readings are different. They only agree for marginally large
tableaux.

For a marginally large tableau T , we sometimes consider its reduced form,
which is obtained by removing all shaded boxes and sliding the rows so that
the result is left-justified. Note that we can recover T from it’s reduced form.

Example 2.12. Continuing Example 2.8, the crystal graph around T using
tableaux in reduced form is

2 2 3 1 1 1
3 4 3 3
4 3

2 3 1 1 1
3 4 3 3
4 3

2 2 3 1 1 1
3 4 4 3
4 3

2 2 3 1 1 1
3 4 3 3
3

2 2 2 3 1 1 1
3 4 3 3
4 3

2 2 2 1 1 1
3 4 3 3
4 3

2 2 3 1 1 1
3 3 3 3
4 3

2 2 3 1 1 1
3 4 3 3
4 4 3

1 3 4

1 2 3 4
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2.2. Crystal structure on Kostant partitions

Here we review the crystal structure on Kostant partitions from [15]. As
explained there, this is naturally identified with the crystal structure on
PBW monomials from, for example, [1, 13] for the reduced expression

w0 = (s1s2 · · · sn−2sn−1snsn−2 · · · s1) · · · (sn−2sn−1snsn−2)sn−1sn.

Let R be the set of symbols {(β) : β ∈ Φ+}. Let Kp(∞) be the free
Z≥0-span of R. This is the set of Kostant partitions. We denote elements of
Kp(∞) by α =

∑
(β)∈R cβ(β).

Definition 2.13. Consider the following subsets of positive roots depending
on i ∈ I.

1. For 1 ≤ i ≤ n− 1, define

Φi = {βk,i−1, βk,i : 1 ≤ k ≤ i} ∪ {γk,i, γk,i+1 : 1 ≤ k ≤ i− 1}

and order the roots in Φi by

β1,i < β1,i−1 < γ1,i < γ1,i+1 < · · ·
< βi−1,i < βi−1,i−1 < γi−1,i < γi−1,i+1 < βi,i.

2. For i = n, define

Φn = {βk,n−2, βk,n−1 : 1 ≤ k ≤ n− 2}
∪ {γk,n−1, γk,n : 1 ≤ k ≤ n− 2} ∪ {γn−1,n}

and order the roots in Φn by

γ1,n < β1,n−2 < γ1,n−1 < β1,n−1 < · · ·
< γn−2,n < βn−2,n−2 < γn−2,n−1 < βn−2,n−1 < γn−1,n.

The bracketing sequence Si(α) consists of, for each β ∈ Φi, cβ-many ‘)’ if
β − αi is a positive root or if β = αi and cβ-many ‘(’ if β + αi is a positive
root, ordered as above. Successively cancel ()-pairs to obtain sequence of the
form ) · · · )(· · · (. We call the remaining brackets uncanceled.

Definition 2.14. Let i ∈ I and α =
∑

(β)∈R
cβ(β) ∈ Kp(∞).
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• Let β be the root corresponding to the rightmost uncanceled ‘)’ in
Si(α). Define

eiα = α− (β) + (β − αi).

If β = αi, we interpret (0) as the additive identity in Kp(∞). If no
such ‘)’ exists, then eiα is undefined.

• Let γ be the root corresponding to the leftmost uncanceled ‘(’ in Si(α).
Define

fiα = α− (γ) + (γ + αi).

If no such ‘(’ exists, set fiα = α+ (αi).

• wt(α) = −
∑
β∈Φ+

cββ.

• εi(α) = number of ‘)’ in the bracketing sequence of α.
• ϕi(α) = εi(α) + 〈α∨

i ,wt(α)〉.

Proposition 2.15 ([15]). With the operations defined above, Kp(∞) realizes
B(∞).

Example 2.16. Let i = n = 4 and consider

α = 5(α1) + (α1 + α2 + α3 + α4) + 3(α1 + 2α2 + α3 + α4)

+ 2(α2 + α4) + (α2 + α3) + (α2 + α3 + α4) + (α3) + 2(α4).

Look at the coefficients cβ of α corresponding to β ∈ Φ4.

0γ1,4 0β1,2 γ1,3 0β1,3 2γ2,4 0β2,2 γ2,3 β2,3 2γ3,4

) )) ) ( ) )

Hence, e4α = α− (γ3,4) + (0) = α− (α4) and f4α = α+ (α4).

3. The isomorphism

Theorem 3.1. The unique crystal isomorphism Ψ: T (∞) −→ Kp(∞) can
be described as follows. For a tableaux T ∈ T (∞), let R1, . . . , Rn−1 de-
note the rows of the reduced form of T starting at the top. Set Ψ(T ) =∑n−1

j=1 Ψ(Rj), where Ψ(Rj) is defined from the unshaded boxes in Rj as fol-
lows:

1. Each j is sent to (βj,j) + (γj,j+1);
2. each pair k, k, where j < k ≤ n− 1 is sent to (βj,k) + (γj,k+1);
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3. each remaining k ∈ {j, j + 1, . . . , n} is sent to (βj,k−1);

4. each remaining k ∈ {n, n− 1, . . . , j+ 1} is sent to (γj,k).

Example 3.2. Let n = 4 and

T =
1 1 1 1 1 1 1 1 1 2 2 3 1 1 1
2 2 2 2 3 4 3 3
3 4 3

.

Then

Ψ(R1) = 3
(
(β1,1) + (γ1,2)

)
+ (γ1,3) + 2(β1,1),

Ψ(R2) =
(
(β2,3) + (γ2,4)

)
+ (γ2,3) + (γ2,4),

Ψ(R3) =
(
(β3,3) + (γ3,4)

)
+ (γ3,4),

so

Ψ(T ) = 5(β1,1) + (γ1,3) + 3(γ1,2) + 2(γ2,4) + (β2,3) + (γ2,3) + (β3,3) + 2(γ3,4).

Compare with Example 2.16.

The proof of Theorem 3.1 will occupy the rest of this section. Denote by

eTi and fT
i the Kashiwara operators on T (∞) from Definition 2.6, and by

eKp
i and fKp

i those on Kp(∞) from Definition 2.14.

Lemma 3.3. Fix T ∈ T (∞) and 1 ≤ j < i < n. The strings bri(Rj) and

Si

(
Ψ(Rj)

)
have the same number of uncanceled brackets, both left and right.

Here, as before, Rj means the jth row of T . Furthermore, if the leftmost

uncanceled left bracket in bri(T ) and Si

(
Ψ(T )

)
are in br(Rj) and Si

(
Ψ(Rj)

)
respectively, then fKp

i Ψ(T ) = Ψ(fT
i T ).

Proof. It suffices to consider the case when the only unshaded boxes of T are

in Rj , so the condition on left brackets holds exactly if there is an uncanceled

left bracket in bri(Rj). First assume i ≤ n − 1. We are only interested in

entries i, i+1, ı+ 1, and ı in Rj , and pairs i− 1, ı− 1, since only these give

rise to brackets in bri(Rj) or Si

(
Ψ(Rj)

)
.

A pair i− 1, ı− 1 corresponds to no brackets in bri(Rj), and to (βj,i−1),

(γj,i) in Ψ(Rj), which gives a canceling pair of brackets in Si

(
Ψ(Rj)

)
. So

the statement is true if and only if it is true with these removed. Thus we

can assume Rj has no such pairs.
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Assume Rj has p boxes of ı+ 1, q of i+ 1, r of i, s of ı:

Rj = i · · · i i + 1 · · · i + 1 · · · ı + 1 · · · ı + 1 ı · · · ı

r q p s

.

We consider four cases.

Case 1: Assume p > q and r > s. Then

Ψ(Rj) = (r − s)(βj,i−1) + s(βj,i) + q(βj,i+1) + q(γj,i+2) + (s+ p− q)(γj,i+1),

so

bri(Rj) = )s (p )q (r and Si

(
Ψ(Rj)

)
= )s (r−s (s+p−q.

Both bri(Rj) and Si

(
Ψ(T )

)
have s uncanceled ‘)’ and r+p−q > 0 uncanceled

‘(,’ and

fT
i Rj = i · · · i i + 1 · · · i + 1 · · · ı + 1 · · · ı + 1 ı · · · ı .

r q p − 1 s + 1

Then

fKp
i Ψ(Rj) = (r − s− 1)(βj,i−1) + (s+ 1)(βj,i) + q(βj,i+1)

+ q(γj,i+2) + (s+ p− q)(γj,i+1)

= Ψ(fT
i Rj).

Case 2: Assume p > q and r ≤ s. Then

Ψ(Rj) = r(βj,i) + q(βj,i+1) + q(γj,i+2) + (r + p− q)(γj,i+1) + (s− r)(γj,i).

Both bri(Rj) and Si

(
Ψ(T )

)
have s uncanceled ‘)’ and r+p−q > 0 uncanceled

‘(,’ and

fT
i Rj = i · · · i i + 1 · · · i + 1 · · · ı + 1 · · · ı + 1 ı · · · ı

r q p − 1 s + 1

giving

fKp
i Ψ(Rj) = r(βj,i) + q(βj,i+1) + q(γj,i+2)

+ (r + p− q − 1)(γj,i+1) + (s− r + 1)(γj,i)

= Ψ(fT
i Rj).
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Case 3: Assume p ≤ q and r > s. Then

Ψ(Rj) = (r − s)(βj,i−1) + (q − p+ s)(βj,i) + p(βj,i+1) + p(γj,i+2) + s(γj,i+1).

Both bri(Rj) and Si

(
Ψ(T )

)
have s+q−p uncanceled ‘)’ and r > 0 uncanceled

‘(,’ and

fT
i Rj = i · · · i i + 1 · · · i + 1 · · · ı + 1 · · · ı + 1 ı · · · ı

r − 1 q + 1 p s

giving

fKp
i Ψ(Rj) = (r − s− 1)(βj,i−1) + (q − p+ s+ 1)(βj,i)

+ p(βj,i+1) + p(γj,i+2) + s(γj,i+1)

= Ψ(fT
i Rj).

Case 4: Assume p ≤ q and r ≤ s. Then

Ψ(Rj) = (q − p+ r)(βj,i) + p(βj,i+1) + p(γj,i+2) + r(γj,i+1) + (s− r)(γj,i).

Again both bri(Rj) and Si

(
Ψ(T )

)
have s + q − p uncanceled ‘)’ and r un-

canceled ‘(.’ If r = 0 then the leftmost uncanceled left bracket in bri(T ) is
not in bri(Rj). If r �= 0,

fT
i Rj = i · · · i i + 1 · · · i + 1 · · · ı + 1 · · · ı + 1 ı · · · ı

r − 1 q + 1 p s

giving

fKp
i Ψ(Rj) = (q − p+ r)(βj,i) + p(βj,i+1) + p(γj,i+2)

+ (r − 1)(γj,i+1) + (s− r + 1)(γj,i)

= Ψ(fT
i Rj).

Example 3.4. Consider type D4 and i = 2, and the tableau

T =
1 1 1 2 2 3 4 3 1 1
2 2
3

.
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Then the reading word and bracketing sequence are

1 1 3 4 3 2 2 1 1 1 2 2 3
br2(T ) = ( ) ( ( ( ( )

so

fT
2 T =

1 1 1 2 3 3 4 3 1 1
2 2
3

.

Direct calculation gives

Ψ(T ) = 2
(
(β1,1) + (γ1,2)

)
+
(
(β1,3) + (γ1,4)

)
+ 2(β1,1) + (β1,3)

= 4(β1,1) + 2(β1,3) + (γ1,4) + 2(γ1,2)

and

Ψ(fT
2 T ) = 2

(
(β1,1) + (γ1,2)

)
+
(
(β1,3) + (γ1,4)

)
+ (β1,1) + (β1,2) + (β1,3)

= 3(β1,1) + (β1,2) + 2(β1,3) + (γ1,4) + 2(γ1,2).

The bracketing sequence on Kostant partitions is

0β1,2 4β1,1 2γ1,2 0γ1,3 0β2,2,

S2

(
Ψ(T )

)
= (( (( ))

so fKp
2 Ψ(T ) = Ψ(T ) − (β1,1) + (β1,1 + α2). Since (β1,1 + α2) = (β1,2) this

agrees with Ψ(fT
2 T ).

Here br2(T ) and S2

(
Ψ(T )

)
have a different number of uncanceled left

brackets. This is the i = j case excluded from Lemma 3.3.

Proof of Theorem 3.1. We first consider the case in which i < n. If suffices to
show that fKp

i Ψ(T ) = Ψ(fT
i T ). By the definition of the bracketing sequences

and of Ψ,

bri(T ) factors as bri(R1)bri(R2) · · · bri(Rn−1), and

Si(Ψ(T )) factors as Si

(
Ψ(R1)

)
Si

(
Ψ(R2)

)
· · ·Si

(
Ψ(Rn−1)

)
.

By Lemma 3.3, for j < i, each bri(Rj) has the same number of uncanceled
left and right brackets as Si

(
Ψ(Rj)

)
. For j > i + 1, it is clear that both

bri(Rj) or Si

(
Ψ(T )

)
are empty. As in Lemma 3.3, let p be the number of
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i+ 1 in Ri, q the number of i+1, r the number of i, and s the number of ı.
Also, let r′ be the number of i+ 1 on row i+ 1, and s′ the number of i+ 1
on row i+ 1. By direct calculation:

• Si

(
Ψ(Ri)

)
= )s+q−min{p,q}, and bri(Ri) = )s(p)q(r, which in particular

have the same number of uncanceled right brackets.
• Si

(
Ψ(Ri+1)

)
= ∅ and bri(Ri+1) = (s

′
)r

′
.

Since T is marginally large r > r′, so both subsequences bri(Ri)bri(Ri+1)
and Si

(
Ψ(Ri)

)
Si

(
Ψ(Ri+1)

)
have the same number of uncanceled right brack-

ets. Using this, if the leftmost uncanceled left bracket in bri(T ) comes from
row j for j < i, then, by Lemma 3.3, this also holds for Si

(
Ψ(T )

)
, and

Ψ
(
fT
i T

)
= fKp

i

(
Ψ(T )

)
.

Since r > r′ the leftmost uncanceled left bracket in bri(T ) cannot come
from bri(Ri+1), so it remains to consider the case where it comes from

bri(Ri). Then Si

(
Ψ(T )

)
has no uncanceled left brackets, so fKp

i just adds a
new αi = βi,i. There are two cases for what can happen in bri(T ):

If p > q, then

Ψ(Ri) = s(βi,i) + q(βi,i+1) + q(γi,i+2) + (s+ p− q)(γi,i+1),

fT
i Ri = i · · · i i + 1 · · · i + 1 · · · ı + 1 · · · ı + 1 ı · · · ı

r q p − 1 s + 1

and

Ψ(fT
i Ri) = (s+ 1)(βi,i) + q(βi,i+1) + q(γi,i+2) + (s+ p− q)(γi,i+1).

If p ≤ q, then

Ψ(Ri) = (s+ q − p)(βi,i) + p(βi,i+1) + p(γi,i+2) + s(γi,i+1),

fT
i Ri = i · · · i i + 1 · · · i + 1 · · · ı + 1 · · · ı + 1 ı · · · ı

r q + 1 p s

and

Ψ(fT
i Ri) = (s+ q − p+ 1)(βi,i) + p(βi,i+1) + p(γi,i+2) + s(γi,i+1).

In both cases, Ψ(fT
i Ri) = Ψ(Ri) + (βi,i), as expected.

The i = n case follows from the i = n−1 case using the Dynkin automor-
phism exchanging nodes n−1 and n, which acts on tableaux by interchanging
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the symbols n̄ and n and on Kostant partitions by interchanging the roots
(βj,n−1) and (γj,n).

4. Stack notation

As mentioned in the introduction, this work is a type Dn analogue of a
type An result in [3]. That result is described using the multisegments from
[9, 12, 16], which are a convenient diagrammatic notation that makes the
crystal structure apparent. By analogy, we now introduce stack notation for
Kostant partitions in type Dn.

For 1 ≤ j ≤ k ≤ n− 1 and 1 ≤ � < m ≤ n, make the association,

βj,k =

k
...

j

, γ�,m =

m+1
...

n−2
n−1 n
n−2
...

�

,

Given i ∈ I, the set Φi from Definition 2.13 is the set of roots for which i
may be either added or removed from the top of the stack to obtain a stack
for another root. If i �= n, the order imposed on Φi in Definition 2.13 is

i
...

1

<

i−1
...

1

<

i
...

n−2
n−1 n
n−2
...

1

<

i+1
...

n−2
n−1 n
n−2
...

1

< · · · < i
i−1 < i− 1 <

i
...

n−2
n−1 n
n−2
...

i−1

<

i+1
...

n−2
n−1 n
n−2
...

i−1

< i.

If i = n, then the order on Φn is

n
n−2
...

1

<

n−2
...

1

<

n−1 n
n−2
...

1

<

n−1
n−2
...

1

<

n
n−2
...

2

· · · < n
n−2 < n−2 < n−1 n

n−2 < n−1
n−2 < n.

The brackets in Si(α) correspond to the stacks, and the crystal operators
from Definition 2.14 act by adding or removing i from the top of an appro-
priate stack: fi adds i to the top of the stack corresponding to the leftmost
uncanceled ‘(’.
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Example 4.1. The Kostant partition from Example 2.16 written in stack
notation is

α = 1 1 1 1 1
3 4
2
1

2
3 4
2
1

2
3 4
2
1

2
3 4
2
1

4
2

4
2

3
2

3 4
2 3 4 4 .

To find the bracket string S4(α), we consider only those roots in Φ4, and
associate to each a bracket, in the following order:

3 4
2
1

4
2

4
2

3 4
2

3
2 4 4

S4(α) = ) ) ) ) ( ) ) .

There is no uncanceled left bracket, so

f4α = 1 1 1 1 1
3 4
2
1

2
3 4
2
1

2
3 4
2
1

2
3 4
2
1

4
2

4
2

3
2

3 4
2 3 4 4 4 .
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