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1. Introduction

Crystal basis theory is an elegant and fruitful subject born out of the theory of quan-
tum groups. Defined by Kashiwara in the early 1990s [13,14], crystals provide a natural 
combinatorial framework to study the representations of Kac–Moody algebras (includ-
ing classical Lie algebras) and their associated quantum groups. Their applications span 
many areas of mathematics, including representation theory, algebraic combinatorics, 
automorphic forms, and mathematical physics, to name a few.

The study of crystal bases has led researchers to develop different combinatorial 
models for crystals which yield suitable settings to studying a particular aspect of the 
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representation theory of quantum groups. For example, highest weight crystals (which are 
combinatorial skeletons of an irreducible highest weight module over a quantum group) 
can be modeled using generalized Young tableaux [12,18], using the Littelmann path 
model [26–29], using alcove paths [24,25] or alcove walks [35], using geometric methods 
[4,7,19], and many others. The choice of using one model over the other usually depends 
on the underlying question at hand (and/or on the preference of the author). In concert 
with the descriptions for the highest weight crystals, there are several known realizations 
of the (infinite) crystal B(∞) (which is a combinatorial skeleton for the Verma module 
with highest weight 0), both in combinatorial and geometric settings, which have various 
applications. Combinatorially describing the crystal B(∞) in affine types is still a work 
in progress (see [21,22] for a generalization of the tableaux model to the affine setting 
in certain types), so another combinatorial model for B(∞) in affine types may prove 
useful.

Our choice of model will be that of rigged configurations, which arise naturally as 
indexing the eigenvalues and eigenvectors of a Hamiltonian of a statistical model [3,20,23]. 
On the other hand, these eigenvectors may also be indexed by one-dimensional lattice 
paths [2,8,9,30,41], which can be interpreted as highest weight vectors in a tensor product 
of certain crystals. In recent years, the implied connection between highest weight vectors 
in tensor products of Kirillov–Reshetikhin crystals and rigged configurations has been 
worked out [32,34,37,38,40].

As we will show, the rigged configuration model has simple combinatorial rules for 
describing the structure which work in all finite, affine, and all simply-laced Kac–Moody 
types. These combinatorial rules are only based on the nodes of the Dynkin diagram and 
their neighbors. This allows us to easily describe the embeddings of B(λ) into B(μ), where 
λa ≤ μa for all indices a. Moreover, we can easily describe the so-called virtualization of 
B(λ) inside of a highest weight crystal of simply-laced type via a diagram folding.

The purpose of this paper is to extend the crystal structure on highest weight crystals 
in finite type in terms of rigged configurations [6,31,37,38,40] to other types and to a 
crystal model for B(∞) in terms of rigged configurations. In slightly more detail, the 
crystal B(∞) is a direct limit of all highest weight crystals, so by relaxing a certain 
admissibility condition on elements of the highest weight crystal, we may obtain a rep-
resentative of an element of B(∞) given by a rigged configuration. An added perk of 
describing B(∞) using rigged configurations is that the description is type-independent. 
However our proofs are almost type-independent as we can do our proofs uniformly 
across all simply-laced finite types, but there will be some changes in the extension to 
non-simply-laced finite types and then, again, when extending outside of finite type.

The organization of this paper goes as follows. Section 2 gives a background on crys-
tals and rigged configurations. In Section 3, we describe the rigged configuration model 
for B(∞) for simply-laced finite types. In Section 4, we extend our model for arbitrary 
simply-laced types. We extend our model to all finite, affine, and certain indefinite (sym-
metrizable) types in Section 5. We describe how highest weight crystals sit inside our 
B(∞) model using rigged configurations in Section 6.
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Notational remark. The notation g may denote different objects in different sections, 
but we will make this clear near the beginning of each (sub)section.

2. Background

2.1. Crystals

Let g be a symmetrizable Kac–Moody algebra with index set I, generalized Cartan 
matrix A = (Aij)i,j∈I , weight lattice P , root lattice Q, fundamental weights {Λi : i ∈ I}, 
simple roots {αi : i ∈ I}, and simple coroots {hi : i ∈ I}. There is a canonical pairing 
〈 , 〉: P∨ × P −→ Z defined by 〈hi, αj〉 = Aij , where P∨ is the dual weight lattice.

An abstract Uq(g)-crystal is a nonempty set B together with maps

wt:B −→ P, εi, ϕi:B −→ Z � {−∞}, ei, fi:B −→ B � {0},

subject to the conditions

(1) ϕi(b) = εi(b) + 〈hi, wt(b)〉 for all i ∈ I,
(2) if b ∈ B satisfies eib 	= 0, then

(a) εi(eib) = εi(b) − 1,
(b) ϕi(eib) = ϕi(b) + 1,
(c) wt(eib) = wt(b) + αi,

(3) if b ∈ B satisfies fib 	= 0, then
(a) εi(fib) = εi(b) + 1,
(b) ϕi(fib) = ϕi(b) − 1,
(c) wt(fib) = wt(b) − αi,

(4) fib = b′ if and only if b = eib
′ for b, b′ ∈ B and i ∈ I,

(5) if ϕi(b) = −∞ for b ∈ B, then eib = fib = 0.

The operators ei and fi, for i ∈ I, are referred to as the Kashiwara raising and Kashiwara 
lowering operators, respectively. See [10,14] for details.

Example 2.1. For a dominant integral weight λ, the crystal basis

B(λ) = {fik · · · fi1uλ : i1, . . . , ik ∈ I, k ∈ Z≥0} \ {0}

of an irreducible, highest weight Uq(g)-module V (λ) is an abstract Uq(g)-crystal. The 
crystal B(λ) is characterized by the following properties.

(1) The element uλ ∈ B(λ) is the unique element such that wt(uλ) = λ.
(2) For all i ∈ I, eiuλ = 0.
(3) For all i ∈ I, f 〈hi,λ〉+1

i uλ = 0.
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Example 2.2. The crystal basis

B(∞) = {fik · · · fi1u∞ : i1, . . . , ik ∈ I, k ∈ Z≥0}

of the negative half U−
q (g) of the quantum group is an abstract Uq(g)-crystal. Some 

important properties of B(∞) are the following.

(1) The element u∞ ∈ B(∞) is the unique element such that wt(u∞) = 0.
(2) For all i ∈ I, eiu∞ = 0.
(3) For any sequence (i1, . . . , ik) from I, fik · · · fi1u∞ 	= 0.

An abstract Uq(g)-crystal is said to be upper regular if, for all b ∈ B,

εi(b) = max{k ∈ Z≥0 : eki b 	= 0}.

Similarly, an abstract Uq(g)-crystal is said to be lower regular if, for all b ∈ B,

ϕi(b) = max{k ∈ Z≥0 : fk
i b 	= 0}.

If B is both upper regular and lower regular, then we say B is regular. In this latter case, 
we may depict the entire i-string through b ∈ B diagrammatically as

e
εi(b)
i b

i−→ e
εi(b)−1
i b

i−→ · · · i−→ eib
i−→ b

i−→ fib
i−→ · · · i−→ f

ϕi(b)−1
i b

i−→ f
ϕi(b)
i b.

Note that B(λ) is a regular abstract Uq(g)-crystal, but B(∞) is only upper regular.
Let B1 and B2 be two abstract Uq(g)-crystals. A crystal morphism ψ: B1 −→ B2 is a 

map B1 � {0} −→ B2 � {0} such that

(1) ψ(0) = 0;
(2) if b ∈ B1 and ψ(b) ∈ B2, then wt(ψ(b)) = wt(b), εi(ψ(b)) = εi(b), and ϕi(ψ(b)) =

ϕi(b);
(3) for b ∈ B1, we have ψ(eib) = eiψ(b) provided ψ(eib) 	= 0 and eiψ(b) 	= 0;
(4) for b ∈ B1, we have ψ(fib) = fiψ(b) provided ψ(fib) 	= 0 and fiψ(b) 	= 0.

A morphism ψ is called strict if ψ commutes with ei and fi for all i ∈ I. Moreover, a 
morphism ψ: B1 −→ B2 is called an embedding if the induced map B1�{0} −→ B2�{0}
is injective.

We say an abstract Uq(g)-crystal is simply a Uq(g)-crystal if it is crystal isomorphic 
to the crystal basis of a Uq(g)-module.

Again let B1 and B2 be abstract Uq(g)-crystals. The tensor product B2⊗B1 is defined 
to be the Cartesian product B2 ×B1 equipped with crystal operations defined by
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ei(b2 ⊗ b1) =
{
eib2 ⊗ b1 if εi(b2) > ϕi(b1),
b2 ⊗ eib1 if εi(b2) ≤ ϕi(b1),

fi(b2 ⊗ b1) =
{
fib2 ⊗ b1 if εi(b2) ≥ ϕi(b1),
b2 ⊗ fib1 if εi(b2) < ϕi(b1),

εi(b2 ⊗ b1) = max
(
εi(b2), εi(b1) − 〈hi,wt(b2)〉

)
,

ϕi(b2 ⊗ b1) = max
(
ϕi(b1), ϕi(b2) + 〈hi,wt(b1)〉

)
,

wt(b2 ⊗ b1) = wt(b2) + wt(b1).

Remark 2.3. Our convention for tensor products is opposite the convention given by 
Kashiwara in [14].

More generally if B1, . . . , Bt are regular crystals, to compute the action of the Kashi-
wara operators on the tensor product B = Bt⊗· · ·⊗B2 ⊗B1, we use the signature rule. 
Indeed, for i ∈ I and b = bt ⊗ · · · ⊗ b2 ⊗ b1 in B, write

+ · · ·+︸ ︷︷ ︸
ϕi(bt)

− · · ·−︸ ︷︷ ︸
εi(bt)

· · · + · · ·+︸ ︷︷ ︸
ϕi(b1)

− · · ·−︸ ︷︷ ︸
εi(b1)

.

From the above sequence, successively delete any (−, +)-pair to obtain a sequence

i- sgn(b) := + · · ·+︸ ︷︷ ︸
ϕi(b)

− · · ·−︸ ︷︷ ︸
εi(b)

.

Suppose 1 ≤ j−, j+ ≤ t are such that bj− contributes the leftmost − in i- sgn(b) and bj+
contributes the rightmost + in i- sgn(b). Then

eib = bt ⊗ · · · ⊗ bj−+1 ⊗ eibj− ⊗ bj−−1 ⊗ · · · ⊗ b1,

fib = bt ⊗ · · · ⊗ bj++1 ⊗ fibj+ ⊗ bj+−1 ⊗ · · · ⊗ b1.

Let C denote the category of abstract Uq(g)-crystals. In [17], Kashiwara showed that 
direct limits exist in C . Indeed, let {Bj}j∈J be a directed system of crystals and let 
ψk,j : Bj −→ Bk, j ≤ k, be a crystal morphism (with ψj,j being the identity map on Bj) 
such that ψk,jψj,i = ψk,i. Let �B = lim−−→Bj be the direct limit of this system and let 
ψj : Bj −→ �B. Then �B has a crystal structure induced from the crystals {Bj}j∈J . Indeed, 
for �b ∈ �B and i ∈ I, define ei�b to be ψj(eibj) if there exists bj ∈ Bj such that ψj(bj) = �b

and ei(bj) 	= 0. This definition does not depend on the choice of bj. If there is no such bj , 
then set ei�b = 0. The definition of fi�b is similar. Moreover, the functions wt, εi, and ϕi

on Bj extend to functions on �B.

2.2. Rigged configurations

Let g be a symmetrizable Kac–Moody algebra with index set I. Set H = I × Z>0. 
Consider a multiplicity array
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L =
(
L

(a)
i ∈ Z≥0 : (a, i) ∈ H

)
and a dominant integral weight λ of g. We call a sequence of partitions ν = {ν(a) : a ∈ I}
an (L, λ)-configuration if ∑

(a,i)∈H
im

(a)
i αa =

∑
(a,i)∈H

iL
(a)
i Λa − λ, (2.1)

where m(a)
i is the number of parts of length i in the partition ν(a). The set of all such 

(L, λ)-configurations is denoted C(L, λ). To an element ν ∈ C(L, λ), define the vacancy 
number of ν to be

p
(a)
i = p

(a)
i (ν) =

∑
j≥0

min(i, j)L(a)
j −

∑
(b,j)∈H

Aab

γb
min(γai, γbj)m(b)

j , (2.2)

where {γa : a ∈ I} are some set of positive integers. If g is of simply-laced type, we take 
γa = 1 for all a ∈ I.

Recall that a partition is a multiset of integers (typically sorted in decreasing order). 
A rigged partition is a multiset of pairs of integers (i, x) such that i > 0 (typically sorted 
under decreasing lexicographic order). Each (i, x) is called a string, where i is called the 
length or size of the string and x is the label, rigging, or quantum number of the string. 
Finally, a rigged configuration is a pair (ν, J) where ν ∈ C(L, λ) and J =

(
J

(a)
i

)
(a,i)∈H

where each J (a)
i the weakly decreasing sequence of riggings of strings of length i in ν(a). 

We call a rigged configuration valid if every label x ∈ J
(a)
i satisfies the inequality p(a)

i ≥ x

for all (a, i) ∈ H. We say a rigged configuration is highest weight if x ≥ 0 for all labels x. 
Define the colabel or coquantum number of a string (i, x) to be p(a)

i − x. For brevity, we 
will often denote the ath part of (ν, J) by (ν, J)(a) (as opposed to (ν(a), J (a))).

Example 2.4. Rigged configurations will be depicted as sequences of partitions with parts 
labeled on the left by the corresponding vacancy number and labeled on the right by the 
corresponding rigging. For example,

−1 −1
−1 −1

1 1
1 1
1 1

0 0
0 −2
0 0
0 0

0 0
0 0

0 0
0 0

is a rigged configuration with g = D5 and L is given by L(1)
2 = L

(2)
1 = L

(3)
1 = 1 with all 

other L(a)
i = 0.

Denote by RC∗(L, λ) the set of valid highest weight rigged configurations (ν, J) such 
that ν ∈ C(L, λ). In [38], an abstract Uq(g)-crystal structure was given to rigged config-
urations, which we recall first by defining the Kashiwara operators.
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Definition 2.5. Let (ν, J) be a valid rigged configuration. Fix a ∈ I and let x be the 
smallest label of (ν, J)(a).

(1) If x ≥ 0, then set ea(ν, J) = 0. Otherwise, let 
 be the minimal length of all strings 
in (ν, J)(a) which have label x. The rigged configuration ea(ν, J) is obtained by 
replacing the string (
, x) with the string (
 − 1, x + 1) and changing all other labels 
so that all colabels remain fixed.

(2) If x > 0, then add the string (1, −1) to (ν, J)(a). Otherwise, let 
 be the maximal 
length of all strings in (ν, J)(a) which have label x. Replace the string (
, x) by the 
string (
 + 1, x − 1) and change all other labels so that all colabels remain fixed. If 
the result is a valid rigged configuration, then it is fa(ν, J). Otherwise fa(ν, J) = 0.

Let RC(L, λ) denote the set generated by RC∗(L, λ) by the Kashiwara operators. For 
(ν, J) ∈ RC(L, λ), if fa adds a box to a string of length 
 in (ν, J)(a), then the vacancy 
numbers in simply-laced type are changed using the formula

p
(b)
i =

{
p
(b)
i if i ≤ 
,

p
(b)
i −Aab if i > 
.

(2.3)

On the other hand, if ea removes a box from a string of length 
, then the vacancy 
numbers must be changed using

p
(b)
i =

{
p
(b)
i if i < 
,

p
(b)
i + Aab if i ≥ 
.

(2.4)

Let RC(L) be the closure under the Kashiwara operators of the set RC∗(L) =⋃
λ∈P+ RC∗(L, λ). Lastly, the weight map wt: RC(L) −→ P is defined as

wt(ν, J) =
∑

(a,i)∈H
i
(
L

(a)
i Λa −m

(a)
i αa

)
. (2.5)

Example 2.6. Let (ν, J) be the rigged configuration from Example 2.4. Then

e3(ν, J) = −1 −1
−1 −1

0 0
0 0
1 1

2 2
0 0
0 0
0 0

−1 −1
0 0

−1 −1
0 0

and

f2(ν, J) = 0 0
0 0

−1 −1
−1
−1 −1
−1 −1

−1
1 1
1 −1
1 1
1 1

0 0
0 0

0 0
0 0

.
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Also we have

wt
(
(ν, J)

)
= 2Λ1 + Λ2 + Λ3 − 4α1 − 5α2 − 6α3 − 3α4 − 3α5

= −Λ1 + Λ2,

wt
(
e3(ν, J)

)
= −Λ1 + 2Λ3 − Λ4 − Λ5 = −Λ1 + Λ2 + α3,

wt
(
f2(ν, J)

)
= −Λ2 + Λ3 = −Λ1 + Λ2 − α2,

Theorem 2.7. (See [38, Thm. 3.7].) Let g be a simply-laced Lie algebra. For (ν, J) ∈
RC∗(L, λ), let X(ν,J) be the graph generated by (ν, J) and ea, fa for a ∈ I. Then X(ν,J)
is isomorphic to the crystal graph B(λ) as Uq(g)-crystals.

Remark 2.8. In [38], elements of X(ν,J) were called unrestricted rigged configurations 
and the graph X(ν,J) was denoted X(ν,J).

We note that our condition for highest weight rigged configurations is equivalent to 
the rigged configuration being highest weight in the sense of a crystal of type g; i.e., that 
the action of all ea on a highest weight rigged configuration is 0.

In the sequel, set ν∅ to be the multipartition with all parts empty; that is, set ν∅ =
(ν(1), . . . , ν(n)) where ν(a)

i = ∅ for all (a, i) ∈ H. Therefore the rigging J∅ of ν∅ must be 
J

(a)
i = ∅ for all (a, i) ∈ H. When discussing the highest weight crystals X(ν∅,J∅), we will 

choose our multiplicity array L to be such that∑
(a,i)∈H

iL
(a)
i Λa = λ.

It is clear that there are several choices of L that may fit this condition, but this does 
not affect the crystal structure.

Definition 2.9. Define RC(λ) to be X(ν∅,J∅) for any symmetrizable Kac–Moody algebra.

3. Rigged configuration model for B(∞) in simply-laced finite type

For this section, unless otherwise noted, let g be a Lie algebra of simply-laced finite 
type. We wish to generate a model for B(∞) with (ν∅, J∅) as its highest weight vector. By 
choosing a fixed λ > 0, for any (ν, J) ∈ RC(λ), there exists k ≥ 0 such that fk

a (ν, J) = 0
by the validity condition given in Definition 2.5. Therefore, we need a modified Kashiwara 
operator f ′

a (for a ∈ I) on rigged configurations to allow the condition (f ′
a)k(ν, J) 	= 0

for all k ≥ 0. To do so, simply define f ′
a by the same process given in Definition 2.5 with 

the validity condition omitted and choose λ = 0.

Definition 3.1. For any symmetrizable Kac–Moody algebra g with index set I, define 
RC(∞) to be the graph generated by (ν∅, J∅), ea, and f ′

a, for a ∈ I, where ea acts on 
elements (ν, J) in RC(∞) using the same procedure as in Definition 2.5.
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The remainder of the crystal structure is given by

εa(ν, J) = max{k ∈ Z≥0 : eka(ν, J) 	= 0}, (3.1a)

ϕa(ν, J) = εa(ν, J) + 〈ha,wt(ν, J)〉, (3.1b)

wt(ν, J) = −
∑

(a,i)∈H
im

(a)
i αa = −

∑
a∈I

|ν(a)|αa. (3.1c)

It is worth noting that, in this case, the definition of the vacancy numbers reduces to

p
(a)
i (ν) = p

(a)
i = −

∑
(b,j)∈H

Aab min(i, j)m(b)
j . (3.2)

Example 3.2. Let g be of type A5 and (ν, J) be the rigged configuration

(ν, J) = −1 −1 −2 −1 0 1 0 −1 −3 −1

Then wt(ν, J) = −α1 − 2α2 − α3 − α4 − 2α5,

e2(ν, J) = −1 −1 0 0 0 1 0 −1 −3 −1

and

f2(ν, J) = −1 −1 −4 −2 0 1 0 −1 −3 −1

Lemma 3.3. The set RC(∞) is an abstract Uq(g)-crystal with Kashiwara operators ea
and f ′

a and remaining crystal structure given in Eq. (3.1).

Proof. This proof here is similar to that given in Proposition 3.5 of [37]. We need to 
show the following, for (ν, J) in RC(∞).

(1) If ea(ν, J) 	= 0 for a ∈ I, then f ′
aea(ν, J) = (ν, J).

(2) For any a ∈ I, we have eaf ′
a(ν, J) = (ν, J).

(3) If ea(ν, J) 	= 0 for a ∈ I, then wt
(
ea(ν, J)

)
= wt(ν, J) + αa.

(4) For a ∈ I, wt
(
f ′
a(ν, J)

)
= wt(ν, J) − αa.

(5) For a ∈ I, εa
(
f ′
a(ν, J)

)
= εa(ν, J) + 1 and ϕa

(
f ′
a(ν, J)

)
= ϕa(ν, J) − 1.

Let (ν, J) be an arbitrary rigged configuration in RC(∞). In what follows, we will suppose 
that m(a)

i is the number of parts of length i in the partition ν(a) and that x is the smallest 
label of (ν, J)(a). Set (ν′, J ′) = f ′

a(ν, J) and (ν′′, J ′′) = ea(ν, J).
To prove (1), suppose that (ν′′, J ′′) is obtained from (ν, J) by changing the string 

(
, x) to (
 − 1, x + 1), so that 
 is the minimal length string among all strings with 
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label x. If i < 
 and (i, y) is a string in (ν, J), then p(a)
i (ν′′) = p

(a)
i (ν) by (2.4). Thus 

(i, y) is unaffected by the action of ea, and y ≥ x + 1. On the other hand, if i ≥ 
, then 
p
(a)
i (ν′′) = p

(a)
i (ν) + 2 by (2.4). Thus (i, y) is replaced by the string (i, y + 2) under the 

action of ea and y + 2 > x + 1. In both cases, (
 − 1, x + 1) is the string with minimal 
label and longest length, so f ′

a will change (
 − 1, x + 1) to (
, x) and f ′
aea(ν, J) = (ν, J), 

as required.
Suppose that (ν′, J ′) is obtained from (ν, J) by changing the string (
, x) to (
 + 1,

x − 1), so 
 is the maximal length of all strings with label x. If i ≤ 
 and (i, y) is a string 
in (ν, J)(a), then p(a)

i (ν′) = p
(a)
i (ν) by (2.3). Thus (i, y) is left unaffected by the action 

of f ′
a, and y > x − 1 because x is the smallest label of (ν, J). On the other hand, if i > 
, 

then p(a)
i (ν′) = p

(a)
i (ν) − 2 by (2.3). Thus (i, y) is replaced by (i, y − 2) by the action 

of f ′
a and y − 2 ≥ x − 1. In both cases, (
 + 1, x − 1) is the string with minimal label 

and shortest length, so ea will change (
 + 1, x − 1) to (
, x) and eaf ′
a(ν, J) = (ν, J) to 

prove (2).
For (3), if (ν′′, J ′′) 	= 0 for some a ∈ I, then (ν′′, J ′′) is obtained from (ν, J) by 

replacing the string (
, x) with (
 − 1, x + 1), where 
 is the minimal length of all strings 
in (ν, J)(a) having label x. Then |ν′′ (a)| = |ν(a)| − 1 and the result follows.

To see (4), if x > 0, then the string (1, −1) is added to (ν, J)(a). Then |ν′ (a)| =
|ν(a)| + 1. On the other hand, if x ≤ 0 and 
 is the maximal length of all strings in 
(ν, J)(a) with label x, then the string (
, x) is replaced by the string (
 + 1, x − 1), so 
|ν′ (a)| = |ν(a)| +1. In both cases, the equality |ν′ (a)| = |ν(a)| +1 yields the desired result.

The first part of (5) follows immediately from the definition. To see ϕa

(
f ′
a(ν, J)

)
=

ϕa

(
(ν, J)

)
− 1, we have

ϕa

(
f ′
a(ν, J)

)
= 〈ha,wt

(
f ′
a(ν, J)

)
〉 + εa

(
f ′
a(ν, J)

)
= 〈ha,wt(ν, J)〉 − 〈ha, αa〉 + εa(ν, J) + 1

= 〈ha,wt(ν, J)〉 − 2 + εa(ν, J) + 1

= ϕa(ν, J) − 1. �
Definition 3.4. For a weight λ, let Tλ = {tλ} be the abstract Uq(g)-crystal with operations 
defined by

eatλ = fatλ = 0, εa(tλ) = ϕa(tλ) = −∞, wt(tλ) = λ.

For any abstract Uq(g)-crystal B, the tensor product Tλ ⊗ B has the same crystal 
graph as B, but with each weight shifted by λ (and appropriate modifications to εa
and ϕa). Following [17], there is an embedding of crystals

Iλ+μ,λ:T−λ ⊗B(λ) ↪−→ T−λ−μ ⊗B(λ + μ)

which sends t−λ ⊗ uλ → t−λ−μ ⊗ uλ+μ and commutes with ea for each a ∈ I. Moreover, 
for any three dominant weights λ, μ, and ξ, we get a commutative diagram
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T−λ ⊗B(λ) T−λ−μ ⊗B(λ + μ)

T−λ−μ−ξ ⊗B(λ + μ + ξ).

Iλ+μ,λ

Iλ+μ+ξ,λ

Iλ+μ+ξ,λ+μ (3.3)

Using the order on dominant integral weights given by μ ≤ λ if and only if λ − μ ∈ P+, 
the set {T−λ ⊗B(λ)}λ∈P+ is a directed system.

Theorem 3.5. (See [17].) We have B(∞) = lim−−→
λ∈P+

T−λ ⊗B(λ).

By Theorem 2.7, each B(λ) is Uq(g)-crystal isomorphic to the graph RC(λ) generated 
by a highest weight rigged configuration (ν, J) of weight λ in RC(L) and the Kashiwara 
operators ea and fa defined in Definition 2.5. Thus we have

lim−−→
λ∈P+

T−λ ⊗B(λ) ∼= lim−−→
λ∈P+

T−λ ⊗ RC(λ).

Our goal is to complete the diagram

B(∞)

lim−−→
λ∈P+

T−λ ⊗B(λ) lim−−→
λ∈P+

T−λ ⊗ RC(λ)

RC(∞)

∼=

(3.4)

by proving that the dashed equality on the right side of the square is actually an equality 
among Uq(g)-crystals. Then we may define an isomorphism along the bottom of the 
square by taking the composite map along the top of the diagram.

Lemma 3.6. Let λ and μ be dominant integral weights, and let

Ĩλ+μ,λ:T−λ ⊗ RC(λ) −→ T−λ−μ ⊗ RC(λ + μ)

by t−λ ⊗ (ν, J) → t−λ−μ ⊗ (ν′, J ′), where (ν′, J ′) = (ν, J) as rigged configurations but 
has vacancy numbers considered as an element of RC(λ + μ). For (ν, J) ∈ RC(λ), the 
image (ν′, J ′) is valid in RC(λ + μ). Moreover, Ĩλ+μ,λ is a crystal embedding.

Proof. Write λ =
∑

(a,i)∈H iL
(a)
i Λa and μ =

∑
(a,i)∈H iK

(a)
i Λa. Then

p
(a)
i (ν) =

∑
j≥1

min(i, j)L(a)
j −

∑
(b,j)∈H

(αa|αb) min(i, j)m(b)
j

≤
∑
j≥1

min(i, j)
(
L

(a)
j + K

(a)
j

)
−

∑
(b,j)∈H

(αa|αb) min(i, j)m(b)
j

= p
(a)
i (ν′).
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Thus

max J
(a)
i = max J

′(a)
i ≤ p

(a)
i (ν) ≤ p

(a)
i (ν′),

for all (a, i) ∈ H such that J (a)
i 	= ∅ (and hence J ′(a)

i 	= ∅). This proves that (ν′, J ′) is 
valid so that Ĩλ+μ,λ is well-defined. Moreover, we have

wt
(
t−λ−μ ⊗ (ν′, J ′)

)
= −(λ + μ) + wt(ν′, J ′)

= −
∑

(a,i)∈H
i
(
L

(a)
i + K

(a)
i

)
Λa +

∑
(a,i)∈H

i
(
(L(a)

i + K
(a)
i )Λa −m

(a)
i αa)

= −
∑

(a,i)∈H
iL

(a)
i Λa +

∑
(a,i)∈H

i
(
L

(a)
i Λa −m

(a)
i αa

)
= −λ + wt(ν, J)

= wt
(
t−λ ⊗ wt(ν, J)

)
,

which shows that Ĩλ+μ,λ preserves the weight map. Since Ĩλ+μ,λ is the identity on rigged 
configurations, we obtain that ea commutes with Ĩλ+μ,λ and Ĩλ+μ,λ preserves εa, for all 
a ∈ I. Also, fa commutes with Ĩλ+μ,λ if fa(ν, J) 	= 0 because the map is the identity 
map on rigged configurations. Then

ϕa(ν′, J ′) = εa(ν′, J ′) + 〈ha, μ + λ〉

= εa(ν, J) + 〈ha, λ〉 + 〈ha, μ〉

= ϕa(ν, J) + 〈ha, μ〉,

so we have

ϕa

(
t−λ ⊗ (ν, J)

)
= max{−∞, ϕa(ν, J) + 〈ha,−λ〉}

= ϕa(ν, J) + 〈ha,−λ〉

= ϕa(ν′, J ′) + 〈ha,−λ− μ〉

= max{−∞, ϕa(ν′, J ′) + 〈ha,−λ− μ〉}

= ϕa

(
t−λ−μ ⊗ (ν′, J ′)

)
.

Hence Ĩλ+μ,λ is a crystal embedding. �
To complete the construction of a directed system of crystals of rigged configura-

tions, we have the following lemma, which follows from a modification of the proof of 
Lemma 3.6.
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Lemma 3.7. For dominant integral weights λ, μ, and ξ, the diagram

T−λ ⊗ RC(λ) T−λ−μ ⊗ RC(λ + μ)

T−λ−μ−ξ ⊗ RC(λ + μ + ξ).

Ĩλ+μ,λ

Ĩλ+μ+ξ,λ

Ĩλ+μ+ξ,λ+μ

commutes.

Proof. Follows by repeated use of Lemma 3.6 and the fact that Ĩ−,− is the identity on 
rigged configurations. �
Lemma 3.8. We have RC(∞) = lim−−→

λ∈P+

T−λ ⊗ RC(λ) as abstract Uq(g)-crystals.

Proof. By Lemmas 3.6 and 3.7, {T−λ ⊗ RC(λ)}λ∈P+ forms a directed system. Let X
denote the direct limit lim−−→T−λ ⊗ RC(λ). Let Θ: X −→ RC(∞) be the identity map 

on rigged configurations; that is, for x ∈ X such that x = Ĩλ(t−λ ⊗ (ν, J)), we have 
Θ(x) = (ν, J). To make the setting clear, we will denote the Kashiwara operators on 
X by �ea, �fa, the Kashiwara operators on RC(λ) and T−λ ⊗ RC(λ) by eλa , fλ

a , and the 
Kashiwara operators on RC(∞) by ea, f ′

a.
To see that Θ commutes with Kashiwara lowering operators, for x ∈ X and λ such 

that x = Ĩλ
(
t−λ ⊗ (ν, J)

)
, we have

�fax = Ĩλ
(
fλ
a (t−λ ⊗ (ν, J))

)
= Ĩλ

(
t−λ ⊗ fλ

a (ν, J)
)
,

where t−λ ⊗ (ν, J) satisfies the condition fλ
a (ν, J) 	= 0. Note that any such λ will suffice 

by the definition of the direct limit. Thus

Θ(�fax) = fλ
a (ν, J) = f ′

a(ν, J) = f ′
aΘ(x).

The calculation involving the Kashiwara raising operators is similar. By the definition of 
the weight function, it is clear that Θ preserves weights. Moreover, Θ sends the highest 
weight vector of X to the highest weight vector (ν∅, J∅) of RC(∞), so Θ is a bijection. �
Theorem 3.9. Let g be a Lie algebra of simply-laced finite type. Then there exists a 
Uq(g)-crystal isomorphism B(∞) ∼= RC(∞) which sends u∞ → (ν∅, J∅).

Proof. By Lemma 3.8, the dashed arrow on the right-hand of the square in (3.4) becomes 
an isomorphism of Uq(g)-crystals, so we may construct an isomorphism by composing 
the maps along the outside of the square. �
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Remark 3.10. From this point forward, we denote f ′
a simply by fa. This should not cause 

any confusion.

4. Extending Theorem 3.9 to arbitrary simply-laced Kac–Moody algebras

We show the convexity condition holds for general symmetrizable types.

Lemma 4.1. Consider a rigged configuration (ν, J). Fix (a, i) ∈ H and suppose that 
m

(a)
i = 0. Let Ca,b, C ′

a,b, C
∨
a,b ∈ Z>0 for all a, b ∈ I, and consider the generalization of 

the vacancy numbers for (ν, J) to

p
(a)
i =

∑
j≥1

min(i, j)L(a)
j −

∑
(b,j)∈H

C∨
a,bAab min(Ca,bi, C

′
a,bj)m

(b)
j

We have

2p(a)
i ≥ p

(a)
i−1 + p

(a)
i+1.

Proof. Consider any (b, j) ∈ H and define

Q
(b)
j =

∞∑
k=1

min(Ca,bj, C
′
a,bk)m(b)

k .

This is the number of boxes in the first Ca,bj columns in the shape C ′
a,bν

(b). Set Θ(b)
j =

Q
(b)
j − Q

(b)
j−1 and Ξ(b)

j = Q
(b)
j+1 − Q

(b)
j . We must have Θ(b)

j ≥ Ξ(b)
j ≥ 0 since C ′

a,bν
(b) is a 

partition. Thus

2Q(b)
j = 2Q(b)

j−1 + 2Θ(b)
j

≥ 2Q(b)
j−1 + Θ(b)

j + Ξ(b)
j

= Q
(b)
j−1 + Q

(b)
j + Ξ(b)

j

= Q
(b)
j−1 + Q

(b)
j+1.

Since m(a)
i = 0, we have Ξ(a)

i = Θ(a)
i , and so

2Q(a)
i = Q

(a)
i−1 + Q

(a)
i+1.

Recall Aab ≤ 0 for all a 	= b and C∨
a,b > 0. Therefore we have −C∨

a,bAab ≥ 0 for all a 	= b, 
and hence

−2
∑

C∨
a,bAabQ

(b)
j ≥ −

∑
C∨

a,bAab

(
Q

(b)
j−1 + Q

(b)
j+1

)

(b,j)∈H (b,j)∈H



B. Salisbury, T. Scrimshaw / J. Combin. Theory Ser. A 133 (2015) 29–57 43
Similarly we can show that∑
j>0

min(i, j)L(a)
j ≥

∑
j>0

min(i− 1, j)L(a)
j + min(i + 1, j)L(a)

j ,

and hence

2p(a)
i ≥ p

(a)
i−1 + p

(a)
i+1. �

We also show the following proposition for generalized types.

Proposition 4.2. Consider a rigged configuration (ν, J) ∈ RC(∞). Fix some a ∈ I and 
consider the generalization of the vacancy numbers given in Lemma 4.1 such that p(a)

∞ =
〈ha, wt(ν, J)〉. Let x be the smallest label of (ν, J)(a) and s = min(0, x). Then we have

εa(ν, J) = −s, ϕa(ν, J) = p(a)
∞ − s.

Proof. The proof that ϕa(ν, J) = p
(a)
∞ − s follows that given in [38, Lemma 3.6] and 

relies on the convexity statement of Lemma 4.1. The statement for εa(ν, J) follows from 
p
(a)
∞ = 〈ha, wt(ν, J)〉 = ϕa(ν, J) − εa(ν, J) (or [37, Thm. 3.8]). �

Note that the proof of Theorem 2.7 given in [38] is based on the Stembridge axioms [43]
and does not use the condition that the crystal of finite type. However it does rely upon 
Proposition 4.2 for simply-laced types (this is contained in [38]). Hence the proof holds 
for arbitrary simply-laced types, and it gives a rigged configuration model for highest 
weight modules in arbitrary simply-laced types. Similarly, the proof of Theorem 3.9 does 
not use any assumption that the Kac–Moody algebra be of finite type, so our result 
extends to arbitrary simply-laced types.

Theorem 4.3. Let g be of simply-laced type. Then there exists a Uq(g)-crystal isomorphism 
B(∞) ∼= RC(∞) which sends u∞ → (ν∅, J∅).

Example 4.4. Consider the hyperbolic Kac–Moody algebra H(4)
1 (see [5] for the notation 

and list of Dynkin diagrams), whose Dynkin diagram is the complete graph on four 
vertices.

1

2

4

3

Then the partitions are enumerated as (ν(1), ν(2), ν(3), ν(4)) and
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Table 5.1
Well-known embeddings g ↪−→ ĝ of affine Kac–Moody algebras by type as given in [11] (n �= 1).

type of g C(1)
n , A

(2)
2n , A

(2)†
2n , D

(2)
n+1 B(1)

n , A
(2)
2n−1 E

(2)
6 , F

(1)
4 G

(1)
2 , D

(3)
4

type of ĝ A
(1)
2n−1 D

(1)
n+1 E

(1)
6 D

(1)
4

f4f
2
2 f1f3f

3
4 f2f1(ν∅, J∅) = 1 2

1 1
0 −1
1 1

4 2 −2 −1
1 −1

.

5. Extending Theorem 3.9 to non-simply-laced Lie algebras

5.1. Virtual crystals

In this section, g denotes an affine Kac–Moody algebra with classical subalgebra g0. 
Fix one of the embeddings g ↪−→ ĝ from Table 5.1, so that ĝ is simply-laced with index 
set denoted by Î. Let Γ be the Dynkin diagram of g and Γ̂ be the Dynkin diagram of 
ĝ.2 These embeddings arise from the diagram foldings φ: ̂Γ ↘ Γ. We also have to define 
additional data γ = (γa)a∈I in the following way.

(1) Suppose Γ has a unique arrow. Removing the edge with this unique arrow leaves two 
connected components.
(a) Suppose the arrow points towards the component of the special node 0. Then 

γa = 1 for all a ∈ I.
(b) Suppose instead the arrow points away from the component of the special node 

0. Then γa is the order of φ for all a in the component of 0 after removing the 
arrow. For a in the component not containing 0, set γa = 1.

(2) If Γ has two arrows, then Γ embeds into the Dynkin diagram of A(1)
2n−1. Then γa = 1

for all 1 ≤ a ≤ n − 1, and for a ∈ {0, n}, we have γa = 2 if the arrow points away 
from a and γa = 1 otherwise.

We have two special cases of the above for types A(1)
1 and A(2)

2 . For type A(1)
1 , we 

consider the diagram folding of A(1)
3 given by φ−1(0) = {0, 2} and φ−1(1) = {1, 3}

and γ0 = γ1 = 1. For type A(2)
2 , we consider the diagram folding of D(1)

4 given by 
φ−1(0) = {0, 1, 3, 4} and φ−1(1) = {2} and γ0 = 1 and γ1 = 4.

The embeddings in Table 5.1 yield natural embeddings Ψ: P −→ P̂ of weight lattices 
as

Λa → γa
∑

b∈φ−1(a)

Λ̂b and αa → γa
∑

b∈φ−1(a)

α̂b.

2 From now on, if S is an object associated with g, then Ŝ will denote the corresponding object associated 
with ĝ under the appropriate embedding listed above.
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This implies that Ψ(δ) = c0γ0δ̂, where δ (resp. δ̂) is the minimal positive imaginary root 
in P (resp. P̂ ).

Remark 5.1. There is another folding of D(1)
4 to obtain A(2)

2 by setting φ−1(0) = {2} and 
φ−1(1) = {0, 1, 3, 4}, but with γ0 = γ1 = 1. Since 0 /∈ φ−1(0), we have Ψ(δ) 	= c0γ0δ̂. 
This implies Ψ(δ) = cφ(0)γφ(0)δ̂; i.e., we want the coefficients of δ̂ to correspond to the 
image of 0 under the diagram folding. Alternatively we could consider this as a folding 
of A(2)†

2 , which is the same as the Dynkin diagram of A(2)
2 but with the labels of nodes 

interchanged (with 1 as the affine node).

Next we restrict our focus to untwisted types; that is, we only consider

C(1)
n ↪−→ A

(1)
2n−1, B(1)

n ↪−→ D
(1)
n+1,

F
(1)
4 ↪−→ E

(1)
6 , G

(1)
2 ↪−→ D

(1)
4 . (5.1)

When restricting to the classical subalgebras from (5.1), we get the embeddings

Cn ↪−→ A2n−1, Bn ↪−→ Dn+1,

F4 ↪−→ E6, G2 ↪−→ D4, (5.2)

via diagram foldings.
If g0 ↪−→ ĝ0 is one of the embeddings from (5.2), then it induces an injection 

v: B(λ) ↪−→ B(λ̂) as sets, where Ψ(λ) = λ̂. However, there is additional structure on the 
image under v as a virtual crystal, where ea and fa are defined on the image as

eva =
∏

b∈φ−1(a)

ê γa

b and fv
a =

∏
b∈φ−1(a)

f̂ γa

b , (5.3)

respectively, and they commute with v [1,33,34]. These are known as the virtual Kashi-
wara (crystal) operators. It is shown in [16] that for any a ∈ I and b, b′ ∈ φ−1(a) we 
have ebeb′ = eb′eb and fbfb′ = fb′fb as operators (recall that b and b′ are not connected), 
so both eva and fv

b are well-defined. The inclusion map v also satisfies the following 
commutative diagram.

B(λ) B(λ̂)

P P̂

v

Ψ

wt ŵt (5.4)

In [1], it was shown that this defines a Uq(g)-crystal structure on the image of v. More 
generally, we define a virtual crystal as follows.
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Definition 5.2. Consider any symmetrizable types g and ĝ with index sets I and Î, 
respectively. Let φ: Î −→ I be a surjection such that b is not connected to b′ for all 
b, b′ ∈ φ−1(a) and a ∈ I. Let B̂ be a Uq(ĝ)-crystal and V ⊆ B̂. Let γ = (γa ∈ Z>0 : a ∈ I). 
A virtual crystal is the quadruple (V, B̂, φ, γ) such that V has an abstract Uq(g)-crystal 
structure defined using the Kashiwara operators eva and fv

a from (5.3) above,

εa := γ−1
a ε̂b, ϕa := γ−1

a ϕ̂b, for all b ∈ φ−1(a),

and wt := Ψ−1 ◦ ŵt.

Remark 5.3. The definition of εa and ϕa forces all of our virtual crystals to be aligned, 
as defined in [33,34].

We say B virtualizes in B̂ if there exists a Uq(g)-crystal isomorphism v: B −→ V . 
The resulting isomorphism is called the virtualization map. We denote the quadruple 
(V, B̂, φ, γ) simply by V when there’s no risk of confusion.

The virtualization map v from rigged configurations of type g0 to rigged configurations 
of type ĝ0 is defined by

m̂
(b)
γai

= m
(a)
i , Ĵ

(b)
γai

= γaJ
(a)
i , (5.5)

for all b ∈ φ−1(a). A Uq(g0)-crystal structure on rigged configurations is defined by using 
virtual crystals [34]. Moreover, we use Eq. (5.5) to describe the virtual image of the type 
g0 rigged configurations into type ĝ0 rigged configurations. Explicitly (ν̂, Ĵ) ∈ V if and 
only if

(1) m̂
(b)
i = m̂

(b′)
i and Ĵ (b)

i = Ĵ
(b′)
i for all b, b′ ∈ φ−1(a),

(2) m̂
(b)
i ∈ γaZ and Ĵ (b)

i ∈ γaZ for all b ∈ φ−1(a), and
(3) m̂

(b)
i = 0 and Ĵ (b)

i = 0 for all j /∈ γaZ for all b ∈ φ−1(a).

Example 5.4. Consider the rigged configuration in type C2

1 1 −1 −1
−1 −1

with L(1)
1 = L

(2)
1 = 1, all other L(a)

i = 0, and weight Λ1 −Λ2. The corresponding virtual 
rigged configuration in type A3 is

1 1 −2 −2
−2 −2

1 1

with L(1)
1 = L

(3)
1 = L

(2)
2 = 1, all other L(a)

i = 0, and weight Λ1 + Λ3 − 2Λ2.
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Remark 5.5. There exist rigged configurations for Uq(g0)-crystals when g is of twisted 
affine type by considering U ′

q(g) crystals; however, we omit those here in order to avoid 
confusion as we will be considering rigged configurations for Uq(g)-crystals in the sequel. 
In particular, for type A(2)†

2n , the riggings of ν(n) are in 12Z. See [34] for more information.

We note that it is sufficient to consider single tensor factors by the following propo-
sition.

Proposition 5.6. (See [33, Prop. 6.4].) Virtual crystals form a tensor category.

Although [33] is concerned with U ′
q(g)-crystals, the proof of Proposition 5.6 does not 

use the U ′
q(g)-crystals condition, but instead is a statement about the tensor product 

rule. It has been cited as above in other papers; e.g., Proposition 3.3 of [34].

5.2. Extending Theorem 3.9 to all finite types

In this section we assume g is of non-simply-laced finite type. For the vacancy numbers, 
we just consider this as the classical subcrystal in the corresponding untwisted affine type. 
Again, let RC(∞) be the set generated by (ν∅, J∅) and ea, fa for a ∈ I, where ea and fa
are defined as in Section 3.

Proposition 5.7 and Theorem 5.8 below are proven in [39] for all finite types. We will 
require these results in the sequel.

Proposition 5.7. The crystal RC(λ) virtualizes in RC(λ̂).

Theorem 5.8. Let g be of finite type. We have RC(λ) ∼= B(λ).

Remark 5.9. Note the proof of Theorem 5.8 uses the fact that B(λ) virtualizes in B(λ̂)
in finite types [1,33,34].

By combining the virtualization results above with the method of proof given for 
Theorem 3.9, we may extend Theorem 3.9 to include non-simply-laced finite types.

Theorem 5.10. Let g be of any finite type. Then there exists a Uq(g)-crystal isomorphism 
RC(∞) ∼= B(∞) such that (ν∅, J∅) → u∞.

Proof. The proof of Theorem 3.9 holds here by following Section 3 and using Theorem 5.8
in place of Theorem 2.7. �

We also have the virtualization of B(∞) crystals.

Proposition 5.11. Let g be of any finite type. The Uq(g)-crystal B(∞) virtualizes in the 
Uq(ĝ)-crystal B̂(∞).
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Proof. This follows immediately from the fact that the diagram

T−λ ⊗B(λ) T−λ−μ ⊗B(λ + μ)

T−λ̂ ⊗B(λ̂) T−λ̂−μ̂ ⊗B(λ̂ + μ̂)

Iλ+μ,μ

Iλ̂+μ̂,μ̂

commutes. �
5.3. Recognition theorem

From the above, we see that we only need to know the factors (γa)a∈I in order to 
show that we get a virtualization of the Uq(g)-crystal of rigged configurations into a 
Uq(ĝ)-crystal by Eq. (5.5). Thus we make the following conjecture.

Conjecture 5.12. Let g be obtained via a diagram folding φ of a simply-laced type ĝ. There 
exists (γa)a∈I such that RC(λ) virtualizes in RC(λ̂) by Eq. (5.5).

We have this for all finite and affine types using the foldings given in Table 5.1. We 
can also show this for all rank 2 with Cartan matrix(

2 x

y 2

)
by considering a diagram folding of Kx,y, the complete bipartite graph on x and y
nodes, with γ1 = γ2 = 1. In such foldings, it is easy to see that Conjecture 5.12 holds 
from Eq. (2.2). In fact, we believe there exists a ĝ such that γa = 1 for all a ∈ I, and we 
call such a folding natural.

In their development of the geometric construction of the crystal basis, Kashiwara 
and Saito [19] established a recognition theorem for the crystal B(∞) valid for all sym-
metrizable Kac–Moody types. In this section, we will recall the recognition theorem with 
appropriate definitions and extend Theorem 3.9 to all Kac–Moody algebras satisfying 
Conjecture 5.12 using the recognition theorem.

Remark 5.13. A straightforward check shows that Proposition 5.7 holds in our affine 
setting, which requires Lemma 4.1, and so Conjecture 5.12 is true in affine types.

Remark 5.14. A priori, we do not have that RC(λ) ∼= B(λ) for arbitrary symmetrizable 
types, as there is no equivalent version of Table 5.1 which would give the analogous state-
ment to Theorem 5.8. Therefore we must change our techniques to show that the crystal 
RC(∞) ∼= B(∞) by using the B(∞) recognition theorem given in [19]. Nevertheless, we 
will be able to show that those RC(λ) carved out of RC(∞) are isomorphic to B(λ) in 
Section 6.
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From this viewpoint, it would be natural to restrict our attention for affine foldings 
from Table 5.1 given by

D
(2)
n+1 ↪−→ A

(1)
2n−1, A

(2)
2n−1 ↪−→ D

(1)
n+1,

E
(2)
6 ↪−→ E

(1)
6 , D

(3)
4 ↪−→ D

(1)
4 , (5.6)

as these foldings satisfy γa = 1 for all a ∈ I. The corresponding classical foldings 
from (5.2) are given by

Bn ↪−→ A2n−1, Cn ↪−→ Dn+1,

F4 ↪−→ E6, G2 ↪−→ D4. (5.7)

We should also note that we can get natural foldings of the other (non-degenerate) affine 
types by

B(1)
n , A

(2)
2n ↪−→ D

(1)
2n+1 C(1)

n ↪−→ D
(1)
n+1

As in Remark 5.1, we have Ψ(δ) = cφ(0)γφ(0)δ̂.

Definition 5.15. Let g be a symmetrizable Kac–Moody algebra and fix a ∈ I. Define 
Z(a) = {za(m) : m ∈ Z} with the abstract Uq(g)-crystal structure given by

wt
(
za(m)

)
= mαa, ϕa

(
za(m)

)
= m, εa

(
za(m)

)
= −m,

ϕb

(
za(m)

)
= εb

(
za(m)

)
= −∞ for a 	= b,

eaza(m) = za(m + 1), faza(m) = za(m− 1),

ebza(m) = fbza(m) = 0 for a 	= b.

The crystal Z(a) is called an elementary crystal.

Remark 5.16. The crystal Z(a) was originally denoted by Bi in [15].

We must first prove a technical lemma about the virtual elementary crystals.

Lemma 5.17. Let g be a Kac–Moody algebra satisfying Conjecture 5.12. Let φ be the 
diagram folding with scaling factors (γa)a∈I . Fix some a ∈ I. The elementary crystal Z(a)
virtualizes in Ẑ(a) =

⊗
b∈φ−1(a) Z(b) (for any order of the factors) with the virtualization 

map v(a) defined by

za(m) →
⊗

b∈φ−1(a)

zb(γam).
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Proof. If Ẑ(a) = Z(b) where {b} = φ−1(a), then it is easy to see the claim is true from 
Definition 5.15.

Now we assume Ẑ(a) = Z(b2)⊗Z(b1) where {b1, b2} = φ−1(a) and b1 	= b2. If b /∈ φ−1(a), 
then

εb
(
zb2(γam) ⊗ zb1(γam)

)
= max(−∞,−∞− 〈hb, γamαb2〉) = −∞.

If b = b2, then we have

εb
(
zb2(γam) ⊗ zb1(γam)

)
= max(−γam,−∞− 〈hb, γamαb2〉)

= −γam

= γaεa
(
za(m)

)
since −∞ + k = −∞ for any finite number k. If b = b1, then we have

εb
(
zb2(γam) ⊗ zb1(γam)

)
= max(−∞,−γam− 〈hb, γamαb2〉)

= −γam

= γaεa
(
za(m)

)
since b1 	= b2. Similar statements hold for ϕb

(
zb2(γam) ⊗ zb1(γam)

)
. From the tensor 

product rule,

eb
(
zb2(γam) ⊗ zb1(γam)

)
=

⎧⎪⎨⎪⎩
zb2(γam) ⊗ eb

(
zb1(γam)

)
if b = b1,

eb
(
zb2(γam)

)
⊗ zb1(γam) if b = b2,

0 otherwise,

=

⎧⎪⎨⎪⎩
zb2(γam) ⊗ zb1

(
γa(m + 1)

)
if b = b1,

zb2
(
γa(m + 1)

)
⊗ zb1(γam) if b = b2,

0 otherwise,

and

fb
(
zb2(γam) ⊗ zb1(γam)

)
=

⎧⎪⎨⎪⎩
zb2(γam) ⊗ fb

(
zb1(γam)

)
if b = b1,

fb
(
zb2(γam)

)
⊗ zb1(γam) if b = b2,

0 otherwise,

=

⎧⎨⎩
zb2(γam) ⊗ zb1

(
γa(m− 1)

)
if b = b1,

zb2
(
γa(m− 1)

)
⊗ zb1(γam) if b = b2,

0 otherwise.

Thus we have
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(eva ◦ v)
(
za(m)

)
= eγa

b1
eγa

b2

(
zb2(γam) ⊗ zb1(γam)

)
= zb2

(
γa(m + 1)

)
⊗ zb1

(
γa(m + 1)

)
= v

(
za(m + 1)

)
= v

(
eaza(m)

)
,

and (êa′ ◦ v)
(
za(m)

)
= 0 = v

(
ea′za(m)

)
for a′ 	= a. Similar statements can be shown for 

fa and fa′ for a′ 	= a. Lastly

wt
(
zb2(γam) ⊗ zb1(γam)

)
= γam(αb2 + αb1) = ŵt(za(m)).

Therefore Z(a) virtualizes in Z(b2) ⊗Z(b1) with virtualization map v. It is clear that it is 
independent of the ordering. Moreover, we may generalize to the case of finitely many 
tensor factors using induction and associativity of the tensor product with a similar 
argument as above. �
Theorem 5.18 (Recognition theorem). (See [19, Prop. 3.2.3].) Let g be a symmetrizable 
Kac–Moody algebra, B be an abstract Uq(g)-crystal, and x0 be an element of B with 
weight zero. Assume the following conditions.

(1) wt(B) ⊂ Q−.
(2) x0 is the unique element of B with weight zero.
(3) εa(x0) = 0 for all a ∈ I.
(4) εa(x) ∈ Z for all x ∈ B and a ∈ I.
(5) For every a ∈ I, there exists a strict crystal embedding Ψa: B −→ Z(a) ⊗B.
(6) Ψa(B) ⊂ {fm

a za(0) : m ≥ 0} ×B.
(7) For any x ∈ B such that x 	= x0, there exists a ∈ I such that Ψa(x) = fm

a za(0) ⊗ x′

with m > 0 and x′ ∈ B.

Then B is isomorphic to B(∞).

Lemma 5.19. Assume g satisfies Conjecture 5.12. Then the crystal RC(λ) is generated 
by (ν∅, J∅) and fa for all a ∈ I.

Proof. By assumption, RC(λ) virtualizes in RC(λ̂). Since RC(λ̂) ∼= B(λ̂) and B(λ̂) is 
generated by its highest weight vector and f̂a for all a ∈ Î, the statement follows. �
Theorem 5.20. Let g be a Kac–Moody algebra satisfying Conjecture 5.12. Then RC(∞) ∼=
B(∞) as Uq(g)-crystals.
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Proof. Let R̂C(∞) denote the rigged configuration realization of the crystal B̂(∞) cor-
responding to the simply-laced Kac–Moody algebra ĝ coming from Theorem 4.3, so that

R̂C(∞) = lim−−→
λ∈P+

(
T−λ ⊗ RC(λ̂)

)
.

From Conjecture 5.12, we have

RC(∞) = lim−−→
λ∈P+

(
T−λ ⊗ RC(λ)

)
,

for reasons similar to the justification of Theorem 5.10. Hence RC(∞) virtualizes in 
R̂C(∞) as in Proposition 5.11. It remains to show that RC(∞) ∼= B(∞) as Uq(g)-crystals.

We note that (1) and (2) are satisfied from Eq. (3.1c) where x0 = (ν∅, J∅). Condition 
(3) is satisfied directly by the definition of (ν∅, J∅), while (4) follows from the definition 
of εa on RC(∞). The remaining properties require virtualization.

Let v(a) denote the virtualization map from Lemma 5.17. Now for each a ∈ I, define 
a crystal morphism Ψa: RC(∞) −→ Z(a) ⊗ RC(∞) in the following way. Consider the 
following commutative diagram.

RC(∞) R̂C(∞)

Z(a) ⊗ RC(∞) Ẑ(a) ⊗ R̂C(∞)

v

Ψa Ψ̂a

v(a) ⊗ v

Since both rows are virtualization maps by Proposition 5.6 and map on the right side 
is a strict embedding because R̂C(∞) ∼= B̂(∞) by Theorem 4.3, we get a well-defined 
strict embedding Ψa = (v(a) ⊗ v)−1 ◦ Ψ̂a ◦ v for every a ∈ I.

For (6), notice the crystal RC(∞) is generated from (ν∅, J∅) and fa, for a ∈ I, from 
the direct limit characterization of RC(∞) and Lemma 5.19. That is to say, we can write 
an arbitrary element (ν, J) of RC(∞) as (ν, J) = fak

· · · fa1(ν∅, J∅) where aj ∈ I. Since 
Ψa is strict and fk

a is a nonzero operator on both Z(a) and RC(∞) for all a ∈ I and 
k ≥ 0, we have Ψa

(
RC(∞)

)
⊂ {fm

a za(0) : m ≥ 0} × RC(∞).
Finally, set (ν, J) = fak

· · · fa1(ν∅, J∅) to be an arbitrary element of RC(∞) and take 
a = a1. Note that ϕa(ν∅, J∅) = 0 by Eq. (3.1b). Then by the tensor product rule for 
crystals, we have Ψa

(
fa(ν∅, J∅)

)
= faza(0) ⊗ (ν∅, J∅) because Ψa(ν∅, J∅) = za(0) ⊗

(ν∅, J∅). Therefore there exists some subsequence (aj1 , . . . , ajk−m
) of (a1, . . . , ak) such 

that a1 = at, for all t 	= j1, . . . , jk−m, and Ψa(ν, J) = fm
a za(0) ⊗ fajt

· · · faj1
(ν∅, J∅) with 

m > 0. This shows condition (7), and we have RC(∞) ∼= B(∞) by Theorem 5.18. �
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Open Problem 5.21. It would be interesting to find a proof which does not appeal to 
virtualization in order to prove (5), (6), and (7); in particular, to show that RC(∞)
is generated only by (ν∅, J∅) and fa, for all a ∈ I, without appealing to virtualiza-
tion.

6. Projecting from RC(∞) to RC(λ)

The goal of this section is to show that taking valid rigged configurations is equivalent 
to projecting to highest weight Uq(g)-crystals, where g is any symmetrizable Kac–Moody 
type satisfying Conjecture 5.12. Recall the one-element crystal Tλ = {tλ} given in Defi-
nition 3.4. Let C = {c} be the one-element crystal with crystal operations defined by

wt(c) = 0, ϕa(c) = εa(c) = 0, fa(c) = ea(c) = 0, a ∈ I.

It is known that the connected component in C ⊗ Tλ ⊗B(∞) generated by c ⊗ tλ ⊗ u∞
is isomorphic to B(λ). In the setting of rigged configurations, recall that to pass from 
RC(∞) to RC(λ), we raise the weight by λ (equivalently we shift the vacancy numbers), 
which corresponds to tensoring with Tλ. Next we take only valid rigged configurations, 
and we will show that this restriction corresponds to tensoring with the crystal C.

Let RCλ(∞) = Tλ ⊗ RC(∞) denote the crystal associated with the Verma module 
with highest weight λ. Strictly speaking,

RCλ(∞) =
{
fak

· · · fa1

(
tλ ⊗ (ν∅, J∅)

)
: a1, . . . , ak ∈ I, k ≥ 0

}
,

but by an abuse of notation, we will consider RCλ(∞) as the set of all rigged configura-
tions generated by fa (a ∈ I) from (ν∅, J∅) where the vacancy numbers and the weights 
are shifted by λ. That is, if λ =

∑
(a,i)∈H iL

(a)
i Λa is a dominant integral weight of type 

g, then for all i ∈ Z≥0 we have

p
(a)
i (νλ) =

∑
j≥0

min(i, j)L(a)
j + p

(a)
i (ν), wt(νλ, Jλ) = wt(ν, J) + λ,

where (νλ, Jλ) ∈ RCλ(∞) corresponds to (ν, J) ∈ RC(∞).

Theorem 6.1. Let C∅ denote the connected component of C ⊗ RCλ(∞) generated by c ⊗
(ν∅, J∅). The map Ψ: C∅ −→ RC(λ) sending c ⊗ (νλ, Jλ) → (νλ, Jλ) is a Uq(g)-crystal 
isomorphism.

Proof. Let (νλ, Jλ) ∈ RCλ(∞) and a ∈ I. First,

wt
(
c⊗ (νλ, Jλ)

)
= wt(c) + wt(νλ, Jλ) = wt(νλ, Jλ),

so Ψ preserves weights. Then,
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εa
(
c⊗ (νλ, Jλ)

)
= max

{
0, εa(νλ, Jλ)

}
= εa(νλ, Jλ),

since εa(νλ, Jλ) ≥ 0, which implies that Ψ preserves εa. From the εa
(
c ⊗ (νλ, Jλ)

)
com-

putation above, we have

ϕa

(
c⊗ (νλ, Jλ)

)
= max

{
ϕa(νλ, Jλ), 〈ha,wt(νλ, Jλ)〉

}
= max

{
εa(νλ, Jλ) + 〈ha,wt(νλ, Jλ)〉, 〈ha,wt(νλ, Jλ)〉

}
= εa(νλ, Jλ) + 〈ha,wt(νλ, Jλ)〉

= ϕa(νλ, Jλ).

We have ϕa(νλ, Jλ) = 0 if and only if fa(νλ, Jλ) = 0 in RC(λ) because RC(λ) is a (lower) 
regular crystal. Also if ϕa(νλ, Jλ) = 0, we have

fa
(
c⊗ (νλ, Jλ)

)
= (fac) ⊗ (νλ, Jλ) = 0

by the tensor product rule. Similarly if ϕa(νλ, Jλ) > 0, then

fa
(
c⊗ (νλ, Jλ)

)
= c⊗ fa(νλ, Jλ).

So Ψ ◦ fa = fa ◦ Ψ. Recall that ϕa

(
c ⊗ (νλ, Jλ)

)
= ϕa(νλ, Jλ) ≥ 0; so it follows, by the 

tensor product rule, that

Ψ
(
ea
(
c⊗ (νλ, Jλ)

))
= Ψ

(
c⊗ ea(νλ, Jλ)

)
= ea(νλ, Jλ) = eaΨ

(
c⊗ (νλ, Jλ)

)
.

This completes the proof that Ψ is a crystal isomorphism. �
Thus, the projection map above corresponds to eliminating those rigged configurations 

which are not valid; that is, Ψ(c ⊗(ν, J)) = 0 if (ν, J) is not valid. Therefore Theorem 5.20
implies the following.

Corollary 6.2. Suppose Conjecture 5.12 holds, then we have RC(λ) ∼= B(λ).

Corollary 6.3. Suppose Conjecture 5.12 holds, then the Uq(g)-crystal B(λ) virtualizes in 
the Uq(ĝ)-crystal B(λ̂).

We also note that Proposition 4.2 extends to both RC(∞) and RC(λ).

Example 6.4. Consider RC(Λ0) with g = A
(1)
2 . The top of the crystal graph is shown in 

Fig. 6.1.
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Fig. 6.1. The top of the crystal RC(Λ0) in type A
(1)
2 , created using Sage.
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